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Abstract

We study the monotonicity of information costs: more informative experiments must be

more costly. As criteria for informativeness, we consider the standard information orders in-

troduced by Blackwell (1951, 1953) and Lehmann (1988). We provide simple necessary and

sufficient conditions for a cost function to be monotone with respect to each order, grounded in

their garbling characterizations. Finally, we examine several well-known cost functions from

the literature through the lens of these conditions.
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1 Introduction

Recent developments in economic theory have expanded the scope of decision-making by model-
ing information as a costly choice variable. This approach puts information on par with other key
decision variables in economic models: just as consumers select consumption bundles and produc-
ers choose input combinations, agents actively decide which information to acquire, taking into
account the cost of doing so. This framework underlies a growing body of work across economics,
including macroeconomics (Sims, 2003), finance (Van Nieuwerburgh and Veldkamp, 2010), and
games (Matějka and McKay, 2012; Yang, 2015; Ravid, 2020).1

When modeling the cost of information, the most fundamental requirement is monotonicity,
that is, more informative options should entail higher costs. Unlike consumption bundles or input
combinations, for which the notion of “more” is straightforward, informativeness is more subtle
and often defined indirectly. One natural approach is to assess informativeness by how much the
information improves decision-making. Two classical information orders—introduced by Black-
well (1951, 1953) and Lehmann (1988)—formalize this idea and are widely recognized as standard
criteria for comparing the informativeness of statistical experiments. Specifically, an experiment is
more informative in the Blackwell sense if it yields higher expected payoffs in all decision prob-
lems, whereas it is more informative in the Lehmann sense if it does so across various classes of
monotone decision problems—such as those with preferences satisfying the single-crossing prop-
erty (Milgrom and Shannon, 1994) or the interval dominance order property (Quah and Strulovici,
2009).

This paper develops a unified framework for analyzing the monotonicity of information costs
with respect to both the Blackwell and Lehmann orders. We derive necessary and sufficient con-
ditions for a cost function to satisfy Blackwell and Lehmann monotonicity, respectively. These
conditions take the form of simple first-order inequalities (in the space of experiments), which
facilitate both the verification of monotonicity for a given cost function and the construction of
new ones with desired properties. Our characterization of Blackwell monotonicity complements
existing results and offers a new geometric perspective on the Blackwell order. For Lehmann
monotonicity, we provide what is, to our knowledge, the first general characterization in the liter-
ature. This result fills an important gap in the literature, as previous analyses have largely focused
on Blackwell monotonicity.

Our unified approach builds on the garbling representations of the two information orders.
For the Blackwell order, it is well known that one experiment is more informative than another
if the latter can be obtained by a garbling of the former, that is, by introducing additional noise.
The simplest such garbling is the one that replaces one signal with another with some probability,

1See Maćkowiak et al. (2023) for a recent and comprehensive survey of the literature.
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while leaving other signals unchanged. Since this operation reduces informativeness, Blackwell
monotonicity requires that the cost function decreases in the direction of such signal replacements.
Taking the replacement probability to zero yields a natural first-order condition, which we call
decreasing in signal replacement. Our characterization results (Theorems 1 and 3) show that, this
local condition is sufficient for global Blackwell monotonicity, under additional natural conditions
regulating the cost of equally informative experiments.2

The generality of the Blackwell order, while being its greatest strength, is also its primary
limitation. By requiring an experiment to be superior to another across all decision problems, the
criterion is often too demanding, rendering many pairs of experiments incomparable. This has
led researchers to seek finer information orders by restricting the class of decision problems under
consideration. A leading example of such a refinement is the Lehmann order, which focuses on the
broad and economically significant class of monotone decision problems. This refinement makes it
possible to rank experiments that are otherwise incomparable under the Blackwell order, providing
a more discerning tool for this important set of economic applications.

Following the same logic as for the Blackwell order, our analysis of Lehmann monotonicity
builds on its characterization in terms of garbling. This representation has been established re-
cently by Kim (2023). It was shown that, for experiments satisfying the monotone likelihood ratio
property (MLRP), one experiment is Lehmann more informative than another if the latter can be
obtained from the former through a generalized form of garbling—one that introduces noise that
is reversely monotone with respect to the underlying states. This generalized garbling gives rise to
a family of reverse signal replacement operations, which replace a low (high) signal with a high
(low) signal with some probability, but only in the states below (above) a certain threshold. Taking
the replacement probability to zero again yields a first-order condition, which we call decreas-

ing in reverse signal replacement. Our characterization results (Theorems 2 and 4) show that this
condition plays the same central role for Lehmann monotonicity.

Our primary technical contribution is a method for constructing informativeness-reducing paths
between two comparable experiments. The key to proving that our local monotonicity conditions
imply global monotonicity lies in this construction, which allows us to decompose arbitrary infor-
mation loss in the sense of the Blackwell and Lehmann orders into continuous paths of local signal
replacements and local reverse signal replacements, respectively. The main challenge, particularly
for the Lehmann order, is the requirement that all intermediate experiments along these paths must
preserve the MLRP. This is a significant hurdle because the set of experiments satisfying the MLRP
is known to be non-convex, making it difficult to apply standard analytical tools that often rely on

2Specifically, permutation invariance requires the costs remain unchanged when permuting the labels of the signals,
while splitting invariance requires that splitting a signal into two copies does not change the cost. Both operations do
not change the informativeness of an experiment. The results also require the cost function to be absolutely continuous,
and in some cases, differentiable.
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convexity.
Our path-construction method overcomes this challenge by ensuring the constructed paths lie

entirely within the MLRP set, thus circumventing the non-convexity problem. We achieve this by
leveraging novel geometric insights into the structure of the garbling representations for both the
Blackwell and Lehmann orders. Specifically, our unified analysis draws on the zonotope represen-
tation for the Blackwell order (Bertschinger and Rauh, 2014) and the probability-probability (PP)
plot representation for the Lehmann order (Jewitt, 2007).

To clarify these ideas, we present our analysis in two stages. We first examine the special case
of binary-signal experiments (Section 2), where the simpler structure provides intuitions on how
signal replacements serve as building blocks and how the MLRP can be preserved. We then extend
this analysis to the more intricate case of arbitrary finite signal spaces (Section 3), demonstrating
how the same core principles apply more generally.

Finally, to illustrate the usefulness of our characterizations, we apply them to several widely
studied classes of information cost functions. For likelihood-separable and posterior-separable
costs, where Blackwell monotonicity has been established (Caplin and Dean, 2015; Denti et al.,
2022b), we derive conditions under which these costs also satisfy Lehmann monotonicity. This
allows us to identify a broad subclass satisfying both notions of monotonicity, while also showing
that Lehmann monotonicity does not hold in general. Fosgerau et al. (2020) introduce the class of
Bregman information costs, which provide a rational inattention foundation for additive random
utility models. These costs are not invariant to signal permutations and are thus known to violate
Blackwell monotonicity globally. We show that they could also violate our local monotonicity
conditions, and hence are neither Blackwell nor Lehmann monotone, even in a local sense.

Related Literature Our work contributes to the literature on information costs by unraveling the
structure of monotonicity, a property considered to be a minimum requirement for any plausible
information cost function.

This principle is typically formalized with respect to the information order by Blackwell (1951,
1953), and much of the prior literature on the topic has focused on ensuring costs are Blackwell
monotone. A significant body of research, for instance, treats Blackwell monotonicity as a foun-
dational axiom, combining it with other properties to characterize specific classes of cost func-
tions (Mensch, 2018; Hébert and Woodford, 2021; Pomatto et al., 2023; Baker, 2023; Bloedel and
Zhong, 2024). Another strand of the literature takes a decision-theoretic approach, aiming to derive
a representation of utility and information costs from observable choice data. In identifying such
costs, Blackwell monotonicity emerges as a necessary consequence of rational, cost-minimizing
behavior as in, e.g., de Oliveira et al. (2017) and Chambers et al. (2020).3

3This revealed preference framework has been broadly applied to derive testable implications of stochastic choice
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Unlike in these works, which use monotonicity as an ingredient to derive a full functional form,
our analysis isolates the property itself. We ask what, on its own, Blackwell monotonicity requires
of a cost function. The result is a necessary and sufficient condition in the form of a simple, local
first-order inequality, which provides a more fundamental understanding of this core property.

The most closely related result to our characterization of Blackwell monotonicity is Claim 1
of Ravid et al. (2022), which likewise relies on directional derivatives of the cost function. A
crucial distinction, however, arises from the domain of the cost function. Our framework defines
cost directly on the space of experiments, yielding a prior-free characterization. In contrast, their
analysis defines the cost function directly on the distribution of posterior means generated by an
experiment. This approach is therefore inherently prior-dependent and implicitly treats any infor-
mation not captured in the first moment of the posterior beliefs as costless. Due to this fundamental
difference, the two characterizations are not directly translatable.

Subsequently, we extend our analysis to Lehmann monotonicity, a stronger notion of mono-
tonicity that, to our knowledge, has not been systematically explored. The information order by
Lehmann (1988) is the relevant criterion for the large and important class of monotone decision
problems commonly found in economics (Quah and Strulovici, 2009; Chi, 2015).4 By charac-
terizing necessary and sufficient conditions for Lehmann monotonicity, we provide a method of
examining whether an existing cost function satisfies Lehmann monotonicity or not. For instance,
while the literature typically assumes that posterior- or likelihood-separable costs have “concave”
or “sublinear” primitive functions to ensure Blackwell monotonicity (Denti et al., 2022b), these
conditions alone do not guarantee Lehmann monotonicity. Our analysis fills this gap by provid-
ing a new set of conditions under which these costs also satisfy the more demanding Lehmann
monotonicity (Proposition 2, 4).

2 Binary Experiments

We begin our analysis by focusing on the special case of binary experiments—those consisting of
only two signals—to illustrate the key ideas of our characterization in a simpler setting. In this
section, we provide necessary and sufficient conditions for information cost functions defined over
binary experiments to satisfy Blackwell monotonicity and Lehmann monotonicity, respectively.
Although this focus is restrictive, the results are not merely illustrative: they also offer practical

models and to characterize the behavioral foundations of various cost structures (e.g., Caplin and Dean, 2015; Denti,
2022; Lipnowski and Ravid, 2023).

4The Lehmann order is particularly relevant for applications with naturally ordered structures, such as in auctions
(Persico, 2000; Bobkova, 2024), finance (Bond, 2023), and screening (Kim, 2023; Asseyer, 2025). It also extends to
decisions under ambiguity (Li and Zhou, 2020).
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value in applications where the underlying signals or actions are binary, a common benchmark in
many economic models.

2.1 Blackwell Monotonicity

2.1.1 Preliminaries

Let Ω = {ω1, · · · , ωn} be a finite set of states and S = {sL, sH} be a binary set of signals. A
binary (statistical) experiment f : Ω → ∆(S) can be represented by an n× 2 matrix:

f =


1− f1 f1

...
...

1− fn fn

 ,
where fi = f(sH |ωi) is the probability of observing the high signal (sH) in state ωi. For conve-
nience, in this section only, we write f = [f1, · · · , fn]⊺ ∈ E2 ≡ [0, 1]n, and refer to the associated
matrix as [1− f, f ] where 1 = [1, · · · , 1]⊺.

Blackwell Information Order An experiment f is said to be Blackwell more informative than
another experiment g, denoted by f ⪰B g, if and only if there exists a stochastic matrix M (i.e.,
Mij ≥ 0 and

∑
j Mij = 1 for all i) such that [1 − g, g] = [1 − f, f ] M . Such a matrix M is

referred to as a garbling matrix. We say that f and g are equally informative, denoted f ≃B g, if
both f ⪰B g and g ⪰B f hold. When both f and g are binary experiments, any garbling matrix M
must be a 2× 2 stochastic matrix. Let M2 denote the set of all such matrices.

Information Costs An information cost function defined over binary experiments is denoted
by C : E2 → R+. We assume C to be differentiable for discussions in the main text, but we
will specify if this assumption is required in the statements of our theorems. Furthermore, say
that C : E2 → R+ is absolutely continuous if for all f, g ∈ E2 and t ∈ [0, 1], the function
φ(t) = C(f+ t(g−f)) is absolutely continuous in t over [0, 1].5 Or equivalently, the Fundamental
Theorem of Calculus (FTC) holds, i.e., φ(1)− φ(0) =

∫ 1

0
φ′(t)dt.

Blackwell Monotonicity Say that C is Blackwell monotone if for all f, g ∈ E2, C(f) ≥ C(g)

whenever f ⪰B g. For a given cost function C, let SC(f) = {g ∈ E2 : C(f) ≥ C(g)} denote
its sublevel set at f , and let SB(f) = {g ∈ E2 : f ⪰B g} denote the set of experiments less

5There are multiple generalizations of absolute continuity from R to Rn emphasizing different aspects, see Dy-
mond et al. (2017). We adopt the generalization which requires the restriction of C to any line segment is absolutely
continuous. A sufficient condition for such absolute continuity is Lipschitz continuity.
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Figure 1: A Graphical Illustration with Binary States

informative than f in the Blackwell order. By definition, C is Blackwell monotone if and only if
SC(f) ⊇ SB(f) for all f ∈ E2.

2.1.2 Parallelogram Hull

To establish necessary and sufficient conditions for Blackwell monotonicity, we begin by charac-
terizing the sublevel set of binary experiments, SB(f). For any f, g ∈ E2 with f ⪰B g, there exists
M ∈ M2 such that [g,1− g] = [f,1− f ]M . Any stochastic matrix M ∈ M2 can be written, for
some (a, b) ∈ [0, 1]2, as

M =

[
a 1− a

b 1− b

]
,

which implies that g = af + b(1− f). This leads to the following characterization.

Lemma 1. For any f, g ∈ E2, f ⪰B g if and only if g lies in the parallelogram hull of f and 1−f ,

defined as

PARL(f,1− f) ≡ {af + b(1− f) : a, b ∈ [0, 1]} .

In other words, SB(f) = PARL(f,1− f).6

When the state space is binary (i.e., n = 2), the parallelogram hull corresponds to the shaded
region (ABCD) in Figure 1a. Specifically, for binary-state and binary-signal experiments, f is
Blackwell more informative than g if and only if g lies within the parallelogram (ABCD).

6This geometric characterization of the Blackwell order coincides with the zonotope order in Bertschinger and
Rauh (2014), which is further applied in de Oliveira et al. (2024)
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2.1.3 The Characterization

Permutation Invariance Observe that SB(f) = SB(1 − f) = PARL(f,1 − f), which implies
that f ⪰B (1 − f) ⪰B f , or equivalently, f ≃B (1 − f). Intuitively, 1 − f can be obtained
by permuting the signals of f . This relabeling of signals should preserve the same information
content. Therefore, any Blackwell monotone cost function C must satisfy C(f) = C(1− f). We
refer to this property as permutation invariance and it serves as a necessary condition for Blackwell
monotonicity.

Decreasing in Signal Replacement Consider the following two garbling matrices:

M1 =

[
1− ϵ ϵ

0 1

]
, M2 =

[
1 0

ϵ 1− ϵ

]
.

The garbling induced by M1 can be interpreted as replacing the low signal (sL) with the high
signal (sH) with probability ϵ, while keeping sH unchanged. Similarly, M2 replaces sH with sL
with probability ϵ, while keeping sL unchanged. Applying these garbling to an experiment f
should reduce its cost if C is Blackwell monotone:

C(f) ≥ C(f + ϵ(1− f)), C(f) ≥ C(f − ϵf).

Notice these inequalities hold for all ϵ ∈ [0, 1]. Then taking the limit as ϵ → 0, we obtain the
following first-order conditions:

⟨∇C(f),1− f⟩ =
n∑

i=1

∂C

∂fi
(1− fi) ≤ 0, (1)

⟨∇C(f),−f⟩ =
n∑

i=1

∂C

∂fi
(−fi) ≤ 0, (2)

where ∇C denotes the gradient of C and ⟨∇C(f), h⟩ denotes the directional derivative of C at f
in the direction of h. We say that the cost function C is decreasing in signal replacement if (1) and
(2) hold for all f ∈ E2.7 Clearly, this property is also necessary for Blackwell monotonicity.

Geometrically, the vectors −f and 1 − f corresponds to the two extreme directions of de-
creasing informativeness,

−→
AB and

−−→
AD, respectively, in Figure 1a. Inequalities (1) and (2) together

imply that ∇C(f) must lie in the polar cone of PARL(f,1 − f), which is the blue shaded area in
Figure 1a. In other words, Blackwell monotonicity imposes a constraint on the feasible directions
of the gradient of C at each experiment.

7These derivatives are well-defined for all f ∈ E2 as f + ϵ(1− f) ∈ E2 and f − ϵf ∈ E2 for all ϵ ∈ [0, 1].
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Our first main result shows that for binary experiments, these two properties are not only nec-
essary but also sufficient for Blackwell monotonicity.

Theorem 1. Suppose C : E2 → R+ is absolutely continuous. Then, C is Blackwell monotone if

and only if C is permutation invariant and decreasing in signal replacement.

Proof Sketch for Sufficiency We use the binary-state case as in Figure 1 to illustrate the proof.
Consider any experiment g lying inside the parallelogram ABCD, i.e., f ⪰B g. If g is above the
line BD as in Figure 1b, there exists a two-segment path from f to g, which moves only in the
directions specified by (1) and (2): moving from f in the direction of −f to reach f ′ and then
moving from f ′ in the direction of 1 − f ′ to reach g. Thus, (1) and (2) imply that the directional
derivatives are negative along this path, and applying the FTC leads to C(g) ≤ C(f).8

If g lies below the line BD, its permutation, 1 − g, lies above the line BD and has the same
cost as g, by permutation invariance. Then, the same argument applies to 1− g implying C(g) =
C(1− g) ≤ C(f).

2.1.4 Further Characterizations with Binary States

When the state is binary, additional geometric insights can be drawn to provide further characteri-
zations of Blackwell monotonicity. Given permutation invariance, it is without loss to focus on the
following set of experiments:

Ê2 ≡ {(f1, f2) : 0 ≤ f1 ≤ f2 ≤ 1}.

For any f, g ∈ Ê2, from the parallelogram in Figure 1b, notice that f ⪰B g if and only if the
slope of AB for f is steeper than that for g, and the slope of AD for f is shallower than that for g.
In other words, f ⪰B g if and only if

f2
f1

≥ g2
g1

and
1− f1
1− f2

≥ 1− g1
1− g2

. (3)

Let α ≡ f2
f1

and β ≡ 1−f1
1−f2

.9 The simple fact above yields the following characterization of Black-
well monotonicity which does not require any additional assumption on C.

Proposition 1. C : Ê2 → R+ is Blackwell monotone if and only if C
(

β−1
αβ−1

, α(β−1)
αβ−1

)
is increasing

in α and β.
8Since the proof concerns only the directional derivatives, differentiability of C is not required.
9Let x/0 = +∞ for all x > 0 and 0/0 = 1.
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In other words, by a change of variables, Blackwell monotonicity in the binary-binary case
is equivalent to the monotonicity of the function C̃(α, β) = C

(
β−1
αβ−1

, α(β−1)
αβ−1

)
in both variables.

In Online Appendix OA.1, we provide examples of cost functions that can be verified easily us-
ing Proposition 1. It worth mentioning here that (3) also proves useful in establishing Lehmann
monotonicity in the next section.

2.2 Lehmann Monotonicity

We now explore Lehmann monotonicity for binary experiments. Lehmann (1988) introduces an
information order that refines the Blackwell order for experiments satisfying the monotone likeli-
hood ratio property (MLRP), defined as:

f(s|ω) · f(s|ω′) ≥ f(s|ω′) · f(s′|ω) for all s′ > s and ω′ > ω. (4)

For binary experiments (with states and signals ordered in their index), the MLRP is equivalent to
f1 ≤ · · · ≤ fn. Thus, we restrict our attention to the following set of experiments:

EMLRP
2 ≡ {f ∈ E2 : 0 ≤ f1 ≤ · · · ≤ fn ≤ 1} .

Notice that while the MLRP is generally not preserved under convex combinations, EMLRP
2 is

indeed convex.

Lehmann Information Order Lehmann’s order is originally defined on continuous signal spaces.
This is without loss of generality, as he shows how to construct a continuous distribution from any
distribution with discontinuous jumps. In our binary setup, for any f ∈ E2, we can associate a
continuous experiment f̃ : Ω → ∆([0, 2]), where the probability distribution function given ωi is
1− fi for s ∈ [0, 1) and fi for s ∈ [1, 2]. Formally, the cumulative distribution functions are given
by:

F̃ (x|ωi) =

(1− fi)x, if 0 ≤ x ≤ 1,

(1− fi) + fi(x− 1), if 1 < x ≤ 2.
(5)

For any f, g ∈ EMLRP
2 , f is Lehmann more informative than g, denoted f ⪰L g, if and only if for

all y ∈ [0, 2], F̃−1(G̃(y|ω)|ω) is increasing in ω. Under the MLRP, the Lehmann order is a strict
refinement of the Blackwell order: f ⪰B g implies f ⪰L g, but the reverse is not true.10

10For example, Kim (2023) (Appendix A.2) provides a pair of binary experiments that satisfy the MLRP and are
comparable in the Lehmann order, but not in the Blackwell order. Moreover, it is also shown that when the MLRP is
violated, f ⪰B g does not necessarily imply f ⪰L g, i.e., the MLRP is a crucial assumption for this refinement to
hold.
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The following lemma provides a tractable characterization of the Lehmann order for binary
experiments.

Lemma 2. For any f, g ∈ EMLRP
2 , f ⪰L g if and only if

gi
fi

≥ gi+1

fi+1

and
1− gi+1

1− fi+1

≥ 1− gi
1− fi

, (6)

for all 1 ≤ i ≤ n− 1.

This condition is closely related to Jewitt (2007), which shows that for MLRP experiments, the
Lehmann order coincides with the Blackwell order for all dichotomies. That is, when restricting the
experiments to every pair of states, one is Blackwell more informative than the other. In particular,
using the characterization of the Blackwell order for the binary-binary case in (3), we have f ′

i

fi
≥ g′i

gi

and 1−fi
1−f ′

i
≥ 1−gi

1−g′i
for all i′ > i. This is equivalent to (6) for all 1 ≤ i ≤ n− 1.

Lehmann Monotonicity Say that C : EMLRP
2 → R+ is Lehmann monotone if for all f, g ∈

EMLRP
2 , C(f) ≥ C(g) whenever f ⪰L g.

Since the Lehmann order allows more comparisons than the Blackwell order, Lehmann mono-
tonicity requires stronger conditions.11 Specifically, there are directions of perturbing an exper-
iment that do not necessarily produce a Blackwell less informative experiment, yet they reduce
informativeness in the Lehmann sense. The following lemma identifies a broader class of signal
replacements that exhibit this behavior.

Lemma 3. For any vector h ∈ [0, 1]n and for any 1 ≤ l ≤ n, define

(h)≤l ≡ [h1, · · · , hl, 0, · · · , 0]⊺ and (h)≥l ≡ [0, · · · , 0, hl, · · · , hn]⊺.

For any f ∈ EMLRP
2 and 1 ≤ l ≤ n, if fl < fl+1, there exists ϵ′ ∈ (0, 1] such that f ⪰L

f + ϵ · (1 − f)≤l ∈ EMLRP
2 for all ϵ ∈ [0, ϵ′]. Similarly, if fl−1 < fl, there exists ϵ′′ ∈ (0, 1] such

that f ⪰L f + ϵ · (−f)≥l ∈ EMLRP
2 for all ϵ ∈ [0, ϵ′′]. 12

Observe that f + ϵ · (1 − f)≤l can be interpreted as replacing the low signal with the high
signal with probability ϵ, but only in the lower states, specifically, those less than or equal to
l. Likewise, f + ϵ · (−f)≥l corresponds to replacing the high signal with the low signal with
probability ϵ, but only in the higher states (those greater than or equal to l). These operations

11However, permutation invariance—a key condition for Blackwell monotonicity—does not apply in the Lehmann
setting, since the analysis with the Lehmann order is restricted to MLRP experiments where permuting signals can
violate this property.

12We set f0 = 0 and fn+1 = 1.
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echo the monotone quasi-garbling characterization of the Lehmann order by Kim (2023): if f is
Lehmann more informative than g, then g can be obtained by adding a reversely monotone noise

to f , i.e., noise that is more likely to generate higher signals in lower states and lower signals in
higher states.13

Taking the limit as ϵ → 0 yields the following first-order conditions that are necessary for
Lehmann monotonicity by Lemma 3:

⟨∇C(f), (1− f)≤l⟩ =
l∑

i=1

∂C

∂fi
(f) · (1− fi) ≤ 0, if fl < fl+1; (7)

⟨∇C(f), (−f)≥l⟩ =
n∑
i=l

∂C

∂fi
(f) · (−fi) ≤ 0, if fl−1 < fl. (8)

We say C is decreasing in reverse signal replacement if (7) and (8) hold for all f ∈ EMLRP
2 and

1 ≤ l ≤ n. The following theorem shows that this condition also serves as a sufficient condition
for Lehmann monotonicity over binary experiments.

Theorem 2. Suppose C : EMLRP
2 → R+ is absolutely continuous. Then, C is Lehmann monotone

if and only if C is decreasing in reverse signal replacement.

Similar to the proof of Theorem 1, the sufficiency direction is proved by constructing a decreas-
ing path from f to g, using only directions specified by (7) and (8). A key challenge absent in the
Blackwell case is to ensure all experiments along the path remain within EMLRP

2 , since (7) and (8)
hold only for MLRP experiments. Our proof provides an explicit construction, where in each step,
fl is transformed to match gl through the direction of either (1−f)≤l or (−f)≥l. Lemma 3 ensures
all experiments along the path remain in EMLRP

2 and are decreasing in Lehmann informativeness.
Observe that inequality (1) is equivalent to (7) with l = n, and (2) corresponds to (8) with

l = 1. This implies that decreasing in reverse signal replacement implies decreasing in signal
replacement. In other words, while Blackwell monotonicity is characterized by two inequali-
ties, Lehmann monotonicity requires the satisfaction of 2n inequalities, making it a significantly
stronger condition.

Remark 1. For m = n = 2, the Blackwell order and the Lehmann order are equivalent when re-
stricted to EMLRP

2 . This follows from the equivalence between the Lehmann order and the Black-
well dichotomies order, as established by Jewitt (2007). While Lehmann monotonicity in this case

13Unlike the state-independent noise in Blackwell’s garbling, reversely monotone noise is state-dependent: the noise
distribution for a lower state first-order stochastically dominates the distribution for a higher one. See Definition 3 of
Kim (2023) for details.
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involves 2× 2 inequalities, two of these can be derived from the others:

1

1− f2
·

2∑
l=1

(1− fl)
∂C

∂fl
+

1

f2
·

2∑
l=1

(−fl)
∂C

∂fl
≤ 0 =⇒ (1− f1)

∂C

∂f1
≤ 0,

1

1− f1
·

2∑
l=1

(1− fl)
∂C

∂fl
+

1

f1
·

2∑
l=1

(−fl)
∂C

∂fl
≤ 0 =⇒ (−f1)

∂C

∂f1
≤ 0,

given f1 < f2. Therefore, when m = n = 2, Lehmann monotonicity essentially requires the
same two inequalities as Blackwell monotonicity, confirming their equivalence. This equivalence,
however, does not extend beyond binary states.

3 Finite Experiments

In this section, we extend our characterization of Blackwell and Lehmann monotonicity to exper-
iments with any finite number of signals. While the intuition for the necessary conditions carries
over from the binary case, establishing their sufficiency is significantly more intricate. The core
difficulty lies in constructing a continuous, cost-decreasing path from a more informative experi-
ment to a less informative one. This challenge is particularly acute for Lehmann monotonicity, as
the path must remain within the non-convex set of MLRP-satisfying experiments.14

3.1 Preliminaries

Let Em denote the set of experiments given a signal space S = {s1, · · · , sm}. For any f ∈ Em, f
can be represented by the n×m matrix where f j

i = f(sj|ωi) is the probability of generating signal
j in state i. Let f j = [f j

1 , · · · , f j
n]

⊺ ∈ Rn
+ denote the j-th column vector of f . Using this notation,

we can rewrite
f = [f 1, · · · , fm] ∈ Rn×m

+ ,

with the constraint that
∑m

j=1 f
j = 1. Let E =

⋃
2≤m<∞ Em denote the set of all finite experiments.

As E is a disjoint union of the sets Em, we define a cost function C : E → R+ as a collection of
functions (Cm)m≥2 with Cm : Em → R+ and C(f) = Cm(f) for f ∈ Em. We say C is absolutely
continuous (differentiable) if Cm is absolutely continuous (differentiable) for all m ≥ 2.

14See Online Appendix OA.2 for an example of violating convexity.

13



3.2 Blackwell Monotonicity

The Blackwell order on E is defined as follows: given f ∈ Em and g ∈ Em′ , say that f is Blackwell
more informative than g if and only if there exists an m × m′ stochastic matrix M such that
g = fM . In this section, we characterize necessary and sufficient conditions for a cost function
C : E → R+ to be Blackwell monotone.

Permutation Invariance As in the binary case, relabeling signals does not change the informa-
tiveness of an experiment and the cost should remain the same. Hence, permutation invariance
remains a necessary condition for Blackwell monotonicity. Formally, for an experiment f ∈ Em, a
permutation of f can be represented by fP where P is an m×m permutation matrix—a stochas-
tic matrix with exactly one non-zero entry in each row and each column.15 Permutation invariance
requires that C(f) = C(fP ) for all f ∈ Em and all permutation matrices P .

Split Invariance Consider a garbling operation in which, upon observing signal j, preserves the
signal with probability 1− λ and relabels it as a new, distinct signal with probability λ. This new
experiment is Blackwell equivalent to the original one, since a garbling that merges the two signals
together recovers the original experiment. Consequently, the cost should also remain the same. In
matrix terms, this corresponds to splitting the column f j into two columns, (1 − λ)f j and λf j .
Formally, a cost function C : E → R+ is split invariant if C(f) = C(f ′) for any f ∈ Em and
f ′ ∈ Em+1 such that

f ′ = [f 1, · · · , (1− λ)f j, λf j, · · · , fm] (9)

for some λ ∈ [0, 1] and 1 ≤ j ≤ m. Note that when λ = 0 (or λ = 1), this operation simply adds
a column 0 to f , effectively embedding f into Em+1. Thus, split invariance ensures that the cost
remains unchanged when unobserved signals are added to an experiment.

Decreasing in Signal Replacement We now extend the “decreasing in signal replacement” prop-
erty from the binary case to finite experiments. For f ∈ Em, define

f j→k ≡
[
0 · · ·

j-th column︷︸︸︷
−f j · · · 0 · · ·

k-th column︷︸︸︷
f j · · · 0

]
.

Observe that, for all ϵ ∈ [0, 1], f + ϵf j→k ∈ Em is a garbling of f , in which signal j is replaced
with signal k with probability ϵ. Since this operation makes the experiment less informative, any
Blackwell monotone cost must decrease under it. By taking ϵ → 0, we obtain the first-order

15Observe that when P is a permutation matrix, its inverse, P−1, is also a permutation matrix that restores the
original experiment. Since both P and P−1 are stochastic matrices, we have f ⪰B fP ⪰B fPP−1 = f , which
implies f ≃B fP .
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condition:

⟨∇Cm(f), f
j→k⟩ =

n∑
i=1

(
−∂Cm

∂f j
i

+
∂Cm

∂fk
i

)
f j
i ≤ 0.16 (10)

We say that C : E → R+ is decreasing in signal replacement if (10) holds for all m ≥ 2 and all
1 ≤ j ̸= k ≤ m.

Our next theorem shows that these three conditions are necessary and sufficient for Blackwell
monotonicity over finite experiments.

Theorem 3. Suppose C : E → R+ is absolutely continuous and differentiable. Then, C is Black-

well monotone if and only if C is permutation invariant, split invariant, and decreasing in signal

replacement.

In the proof of Theorem 3, to construct a continuous path between any two comparable exper-
iments f ∈ Em and g ∈ Em′ , we first embed both into Em+m′ and assign their signals to disjoint
subsets. We then define a path by taking convex combinations of these embedded experiments
within Em+m′ . Along this path, the experiment evolves in a direction that can be expressed as
a positive linear combination of signal replacements. The differentiability of the cost function
implies that its directional derivative along this path is likewise a positive linear combination of
its derivatives with respect to signal replacements, each of which is negative. Hence, the cost
decreases along the path.

Notice that differentiability enables the construction of a path using positive linear combina-
tions of signal replacements, rather than restricting to single-signal replacements as in the binary
case. This relaxation is essential: as Proposition OA.1 in the Online Appendix shows, the argu-
ment used for binary experiments does not extend to more general cases. An alternative approach
that does not rely on differentiability is discussed in the following remark.

Remark 2. The proof of Theorem 3 relies on the step of embedding the experiments into a larger
space Em+m′ where the cost function must be well-defined. In some applications, however, it
may be desirable to characterize Blackwell monotonicity for a cost function defined only over
experiments with a fixed number of signals, say Em. In the Online Appendix OA.3, we show
that when the cost function Cm : Em → R+ is absolutely continuous and quasi-convex,17 Cm is
Blackwell monotone if and only if it is permutation invariant and decreasing in signal replacement.
To address the issue raised in Proposition OA.1, we show that every extreme point of the sublevel
set of an experiment can be reached through a combination of single-signal replacements and
permutations. This fact, combined with quasi-convexity, establishes the result.

16Since f1+ · · ·+fm = 1, we can pick j∗ and normalize ∂Cm/∂f
j∗

i = 0. Whenm = 2 and j∗ = 1, this definition
corresponds to (1) and (2).

17Cm is quasi-convex if for any f, g ∈ Em, C(λf + (1− λ)g) ≤ max{C(f), C(g)} for all λ ∈ [0, 1]
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3.3 Lehmann Monotonicity

We now turn to characterizing necessary and sufficient conditions for Lehmann monotonicity.
Since the Lehmann order is defined over experiments that satisfy the MLRP, we focus on the
following subset of E :

EMLRP ≡ {f ∈ E : f satisfies the MLRP} .

Let EMLRP
m denote the subset of EMLRP of which elements have m signals.

The Lehmann order over EMLRP is defined analogously to the binary case. Given f ∈ EMLRP
m ,

we associate it with a continuous experiment f̃ : Ω → ∆([0,m]), as constructed in (5). Then, for
any f ∈ EMLRP

m and g ∈ EMLRP
m′ , say that f is Lehmann more informative than g if and only if for

all y ∈ [0,m′], F̃−1(G̃(y|ω)|ω) is increasing in ω.

Split Invariance Suppose that f ∈ EMLRP
m and f ′ ∈ Em+1 are constructed as in (9) for some

λ ∈ [0, 1]. Notice that f ′ also satisfies the MLRP, i.e., f ′ ∈ EMLRP
m+1 . Since splitting an experiment

does not change Blackwell informativenss, Lehmann informativeness also remains unchanged as
the Lehmann order is weaker than the Blackwell order for MLRP experiments. Formally, it can
be shown that for any x ∈ [0,m] and y ∈ [0,m + 1], both F̃−1(F̃ ′(y|ω)|ω) and F̃ ′−1

(F̃ (x|ω)|ω)
are constant across ω, thus, f and f ′ are equally informative in the Lehmann sense. Hence, split
invariance serves as a necessary condition for Lehmann monotonicity.

Decreasing in Reverse Signal Replacement We extend “decreasing in reverse signal replace-
ment” property from the binary case to finite experiments. Recall that f j

≤l = [f j
1 , · · · , f

j
l , 0, · · · , 0]⊺

and f j
≥l = [0, · · · , 0, f j

l , · · · , f j
n]

⊺. For f ∈ EMLRP
m , define

f j→j+1
≤l ≡ [0, · · · ,0,0,−f j

≤l, f
j
≤l,0, · · · ,0],

f j→j−1
≥l ≡ [0, · · · ,0, f j

≥l,−f
j
≥l,0,0, · · · ,0].

Notice that, unlike in “decreasing in signal replacement” where signal j may be replaced by any
signal k, here we only allow signal j to be replaced by its immediate neighbors, i.e., j+1 or j− 1.
This restriction is crucial for ensuring that the resulting experiment remains in EMLRP

m , as shown
by the following lemma. More importantly, it shows that such perturbations reduce the Lehmann
informativeness of the experiment.

Lemma 4. Suppose that f ∈ EMLRP
m . For any 1 ≤ l ≤ n and 1 ≤ j ≤ m − 1, if f j

l f
j+1
l+1 >

f j
l+1f

j+1
l ,18 then there exists ϵ′ ∈ (0, 1] such that f ⪰L f + ϵf j→j+1

≤l ∈ EMLRP
m for all ϵ ∈ [0, ϵ′].

18Here, given j, we set f jn+1 = 0 and f j+1
n+1 = 1.
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Similarly, for any 1 ≤ l ≤ n and 2 ≤ j ≤ m, if f j−1
l−1 f

j
l > f j−1

l f j
l−1,

19 then there exists ϵ′′ ∈ (0, 1]

such that f ⪰L f + ϵ · f j→j−1
≥l ∈ EMLRP

m for all ϵ ∈ [0, ϵ′′].

A cost function C : EMLRP → R+ is said to be decreasing in reverse signal replacement if for
any m ≥ 2, experiment f ∈ EMLRP

m , and 1 ≤ l ≤ n, the following conditions hold:

(a) if 1 ≤ j ≤ m− 1 and f j
i f

j+1
i+1 > f j

i+1f
j+1
i ,

⟨∇Cm(f), f
j→j+1
≤l ⟩ =

l∑
i=1

(
−∂Cm

∂f j
i

+
∂Cm

∂f j+1
i

)
f j
i ≤ 0, (11)

(b) if 2 ≤ j ≤ m and f j−1
i−1 f

j
i > f j−1

i f j
i−1,

⟨∇Cm(f), f
j→j−1
≥l ⟩ =

n∑
i=l

(
−∂Cm

∂f j
i

+
∂Cm

∂f j−1
i

)
f j
i ≤ 0, (12)

where Cm is the restriction of C to EMLRP
m .

The next theorem shows that this condition along with split invariance are necessary and suffi-
cient conditions for Lehmann monotonicity.

Theorem 4. Suppose C : EMLRP → R+ is absolutely continuous and differentiable. Then, C is

Lehmann monotone if and only if C is split invariant and decreasing in reverse signal replacement.

While the core idea of the proof of Theorem 4 remains the construction of a continuous path of
experiments, the additional requirement that every experiment along the path satisfies the MLRP
introduces significant challenges—–most notably because the MLRP is not preserved under con-
vex combinations of experiments. As a result, the construction must be more intricate and draw
on insights from multiple fronts. In the next section, we provide a detailed sketch of the proof,
highlighting the key geometric ideas that underpin our approach.

3.3.1 Proof Sketch

Geometry of MLRP Experiments and the Lehmann Order We begin by revisiting the geo-
metric characterization of MLRP experiments and the Lehmann order introduced by Jewitt (2007).
He considers the probability-probability (PP) plots of experiments in two ordered states. Specif-
ically, in our finite signal setup, we plot cumulative probabilities for adjacent states, e.g., the
cumulative probabilities of signal j for an experiment f under states i and i + 1, denoted by

19Similarly, we set f j−1
0 = 1 and f j0 = 0.
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(a) PP plot and the Lehmann order
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(b) Operation of shrinking Si(f)

Figure 2: Geometry of MLRP experiments and the Lehmann order

F j
i,i+1 ≡ (F j

i , F
j
i+1). Observe that the slope of the line segment connecting F j

i,i+1 and F j+1
i,i+1 is

f j+1
i+1 /f

j+1
i . Because of the MLRP, the slope is increasing, i.e., the PP plot is convex as illustrated

in Figure 2a. Equivalently, the area in [0, 1]2 above the PP plot, denoted by Si(f), is a convex set.
The formal definition of Si(f) can be found in Appendix B.2.1.

Jewitt (2007) shows that f ⪰L g if and only if for each pair of states, the PP plot of f lies
below that of g as illustrated in Figure 2a. This in turn becomes equivalent to Si(f) ⊇ Si(g) for
all 1 ≤ i ≤ n− 1, which we prove in Lemma B.1.

Path Construction For any f, g ∈ EMLRP with f ⪰L g, our goal is to construct a continuous
path from f to g using the split and reverse signal replacement operations. Geometrically, since
Si(f) ⊇ Si(g), this amounts to continuously shrink Si(f) toward Si(g) for all 1 ≤ i ≤ n − 1. A
key requirement is that the PP plots must remain convex throughout the transformation, thereby
preserving the MLRP along the entire path.

We next illustrate that such a path can be constructed by iteratively applying a key operation
that (i) shrinks Si(f), (ii) leaves Si′(f) unchanged for all i′ ̸= i, (iii) preserves the convexity of the
PP plots throughout the transformation, and (iv) decreases the cost due to the decreasing in reverse
signal replacement property.

The Key Opeartion Consider the PP plot of f in Figure 2b. The goal is to shrink Si(f) by
removing the region below the blue segment connecting F j

i,i+1 and F j+2
i,i+1, while keeping Si′(f)

unchanged for all i′ ̸= i. We show that this can be implemented through a combination of split and
reverse signal replacement operations, preserving the MLRP throughout the transformation.

First, we insert a zero column between f j+1 and f j+2. By split invariance, this does not affect
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Figure 3: Shrinking Operations

the cost. Next, we repeatedly apply reverse signal replacements to transfer a portion of f j+1
≤i and a

portion of f j+2
≥i+1 into this new column. The transformation starts and ends as follows:[
f j+1
≤i 0 f j+2

≤i

f j+1
≥i+1 0 f j+2

≥i+1

]
→ · · · →

[
(1− a)f j+1

≤i af j+1
≤i f j+2

≤i

f j+1
≥i+1 bf j+2

≥i+1 (1− b)f j+2
≥i+1

]
≡ f̃ .

At the endpoint f̃ , notice that for all i′ ̸= i, this procedure merely splits a signal—either signal
j+1 (if i′ < i) or signal j+2 (if i′ > i)—into two parts. Hence, Si′(f̃) remains identical to Si′(f);
geometrically, this corresponds to adding a dot along the same segment of the PP plot. For Si(f̃),
the first column represents a leftward movement of a dot from F j

i,i+1, and the second corresponds
to an upward movement of a dot from F j+1

i,i+1, as indicated by the two blue dots in Figure 2b. The
parameters a and b are chosen such that Si(f̃) aligns precisely with the blue segment connecting
F j
i,i+1 and F j+2

i,i+1.
Next, we detail how the incremental movements are constructed to ensure that the PP plot

remains convex throughout the procedure. The red curve in Figure 2b illustrates the PP plot of
an intermediate experiment during this process. The key is to maintain alignment of the first two
red segments so that their common slope remains steeper than that of the third segment—–thus
preserving convexity. To achieve this, we construct the intermediate experiments by rotating the
first two segments together around the point F j

i,i+1.
Finally, we argue that every incremental movement is a positive linear combination of reverse

signal replacements. This implies, by the decreasing-in-reverse-signal-replacement property and
the differentiability of the cost function, that the overall cost decreases throughout the operation.
The formal statement and proof for the key operation is given in Lemma B.2, where, importantly,
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we further show that the key operation can be applied more generally to remove the region below
the segment connecting any F j

i,i+1 and F k
i,i+1.

Applying the Key Operation Finally, we use Figure 3 to illustrate how the key operation can
be applied to shrink Si(f) towards Si(g). Begin by extending the first segment of Si(g) until it
intersects the boundary of Si(f). Then, split the corresponding signal of f so that the intersection
becomes a new cumulative point as shown by the red dot in Figure 3a. This allows us to apply the
key operation to remove the region below the extended segment. Once this step is complete, we
proceed to the next segment of Si(g) and repeat the process as illustrated by Figure 3b. In this way,
we iteratively shrink Si(f) toward Si(g). Throughout the procedure, Si′(f) remains unchanged
for all i′ ̸= i, and the overall cost decreases. Repeating the process for each 1 ≤ i ≤ n − 1, we
construct a path establishing that the cost of f is greater than an experiment that has the same PP
plots as g. By splitting invariance, such an experiment shares the same cost as g, thus proving
C(f) ≥ C(g).

4 Monotonicity Properties of Widely Used Costs

In this section, we apply our characterizations to several widely-used classes of information cost
functions in the literature and analyze their monotonicity properties. While the Blackwell mono-
tonicity of some of these classes is already known, our framework provides a unified approach for
studying both Blackwell and Lehmann monotonicity. In particular, we demonstrate that Blackwell
monotonicity of these costs does not guarantee Lehmann monotonicity, and we identify the addi-
tional conditions under which Lehmann monotonicity holds. Moreover, we show that some known
costs may fail both Blackwell and Lehmann monotonicity, even in a local sense.

4.1 Likelihood Separable Costs

We define an information cost function C : E → R+ to be likelihood separable, a term introduced
by Denti et al. (2022b), if there exists a differentiable function ψ : [0, 1]n → R+ such that for all
m and f ∈ Em,

C(f) =
m∑
j=1

ψ(f j)− ψ(1).

Because likelihood separable costs are additively separable across signals, verifying the condi-
tion of decreasing in (reverse) signal replacement can be reduced to analyzing the behavior of the
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function ψ. Specifically, it holds that

⟨∇C(f), f j→k⟩ =
n∑

i=1

(
−∂ψ(f

j)

∂f j
i

+
∂ψ(fk)

∂fk
i

)
f j
i .

This observation leads to the following conditions for Blackwell and Lehmann monotonicity of
likelihood separable costs.

Proposition 2. The following statements are true:

(i) A likelihood separable cost is Blackwell monotone if and only if ψ is sublinear.20

(ii) A likelihood separable cost with sublinear ψ is Lehmann monotone if, for all l ∈ {1, . . . , n},

l∑
i=1

(
−∂ψ(h)

∂hi
+
∂ψ(h′)

∂h′i

)
hi ≤ 0, and

n∑
i=l

(
−∂ψ(h

′)

∂h′i
+
∂ψ(h)

∂hi

)
h′i ≤ 0,

for all h, h′ ∈ [0, 1]n such that h ≤MLRP h
′, i.e., hih′i′ ≥ hi′h

′
i for all i < i′.

We note that results similar to (i) have been established in Denti et al. (2022b) and Baker
(2023), but applying Theorem 3 yields a more direct proof. Specifically, to show that sublinear ψ
implies decreasing in signal replacement,21 observe that

C(f + ϵf j→k)− C(f) = ψ(fk + ϵf j)− ψ(f j) + ψ((1− ϵ)f j)− ψ(f j)

≤ ϵψ(f j)− ϵψ(f j) = 0,

where the inequality follows from the sublinearity of ψ.
The conditions in (ii) are derived from our characterization of Lehmann monotonicity in The-

orem 4. These conditions are sufficient as they imply decreasing in reverse signal replacement
holds for MLRP experiments. However, they are not shown to be necessary with the only subtlety
that, given a pair of h ≤MLRP h′, it is not clear whether they always belong to an MLRP experi-
ment. Nonetheless, to falsify the Lehmann monotonicity for a likelihood separable cost, it suffices
to identify a single violation of these inequalities within some MLRP experiment. The proof of
Proposition 3 provides such an example.

When seeking a Blackwell monotone cost function, Proposition 2 provides a convenient con-
struction: any sublinear function ψ yields a likelihood separable cost that satisfies Blackwell mono-
tonicity. This includes a broad class of functions, such as norms and seminorms. In contrast, the

20That is, ψ(γ · h) = γ · ψ(h) for all h ∈ [0, 1]n and γ ≥ 0 such that γ · h ∈ [0, 1]n; and ψ(h+ l) ≤ ψ(h) + ψ(l)
for all h, h′ ∈ [0, 1]n such that h+ h′ ∈ [0, 1]n.

21Permutation invariance and split invariance follow directly from the definition and the sublinearity of ψ.
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condition for Lehmann monotonicity is more restrictive. While not every sublinear ψ leads to a
Lehmann monotone cost, we show below that a reasonably large and natural subclass of likelihood
separable costs does satisfy Lehmann monotonicity.

Proposition 3. The following statements are true:

(i) There exist likelihood separable costs with sublinear ψ that are not Lehmann monotone.

(ii) If ψ(·) is a weighted p-norm with p > 1, i.e., there exists wi > 0 for all i such that

ψ(h) =

(
n∑

i=1

wih
p
i

)1/p

,

then the likelihood separable cost is Lehmann-monotone.

4.2 Posterior Separable Costs

When a full-support prior µ is given, information costs can be defined as functions of the random
posteriors induced by an experiment.22 Specifically, for any f ∈ E , let τ j denote the total prob-
ability of observing signal sj and let qj denote the posterior distribution vector given signal sj ,
i.e.,

τ j =
n∑

i′=1

µi′f
j
i′ , and qji =

µif
j
i∑n

i′=1 µi′f
j
i′

, for i = 1, . . . , n.

Among such costs, a cost function is said to be posterior separable if there exists a function
H : [0, 1]n → R representing a measure of uncertainty such that, for all m and f ∈ Em,

Cµ(f) = H(µ)−
m∑
j=1

τ jH(qj).

It is well known that a posterior separable cost is Blackwell monotone if and only if H is concave
(Caplin and Dean, 2015; Denti, 2022).

Notably, there is a dual relationship between posterior separable costs with concave H and
likelihood separable costs with sublinear ψ.23 As a result, not all such posterior separable costs

22For extensive discussions on the relationship between experiment-based and posterior-based costs, see Gentzkow
and Kamenica (2014), Mensch (2018), Morris and Strack (2019), Denti et al. (2022a) and Bloedel and Zhong (2024).

23The general duality between experimental costs and posterior-based costs is established in Denti et al. (2022b):
see Corollary 20. If we restrict attention to posterior separable or likelihood separable, they have a specific dual
relationship (Proposition 37)
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are Lehmann monotone, and the same sufficient condition for Lehmann monotonicity from Propo-
sition 2 applies. When working with the posterior separable functional form, we can derive a
further sufficient condition that is more conveniently expressed in terms of the derivatives of H
with respect to the posteriors.

Proposition 4. Suppose H is concave and differentiable. If, for all l ∈ {1, . . . , n},

l∑
i=1

(
∂H(q)

∂qi
− ∂H(q′)

∂q′i

)
qi ≤ 0, and

n∑
i=l

(
∂H(q′)

∂q′i
− ∂H(q)

∂qi

)
q′i ≤ 0,

for all q ≤FOSD q′, i.e.,
∑s

i=1 qi ≥
∑s

i=1 q
′
i for all s ∈ {1, . . . , n}. Then the posterior separable

cost is Lehmann monotone.

A well-known example of posterior separable costs is the entropy cost (Sims, 2003), defined
byH(q) = −

∑n
i=1 qi log qi. Its Blackwell monotonicity is well established, and we can also verify

its Lehmann monotonicity using the sufficient condition in Proposition 4.

Proposition 5. The entropy cost is Lehmann monotone.

4.3 Bregman Information Costs

The entropy cost is well known to provide a rational inattention foundation for discrete choice
models taking the multinomial logit form (Matějka and McKay, 2015). The previous section es-
tablished its Lehmann monotonicity, thereby strengthening its theoretical appeal. As a generaliza-
tion of this approach, Fosgerau et al. (2020) introduce the broader class of Bregman information
costs, showing that they can support any additive random utility discrete choice model within a
rational inattention framework. In this section, we examine the monotonicity properties of this
generalized class of costs.

Given a prior µ, the Bregman information cost is defined with respect to a function S :

[0, 1]m → [0, 1]m as follows:

Cµ(f) =
m∑
j=1

n∑
i=1

µif
j
i log

(
µiSj(f

⊺
i )

Sj (
∑

i′ µi′f
⊺
i′)

)
−

n∑
i=1

µi log µi,

where f⊺
i ∈ [0, 1]m denotes the i-th row of f (interpreted as a column vector), and Sj(·) is the j-th

component of S(·). Notably, the entropy cost is a special case of the Bregman cost with S(h) = h

for all h ∈ [0, 1]m.
Because S need not be symmetric, Bregman information costs are generally not permutation

invariant and, hence, are not necessarily Blackwell monotone. For a common specification of S
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corresponding to the nested logit model, we next demonstrate that the Bregman cost may violate
decreasing in signal replacement, and thus fails to satisfy both Blackwell and Lehmann monotonic-
ity, even in a local sense.

Let the signal space be partitioned into mutually exclusive nests, and let gj denote the nest
containing signal j. Consider the simplest nested logit structure, where the nesting parameter
ξ ∈ (0, 1] is constant across all nests. In this case, the Bregman information cost takes the form:

Cµ(f) =
m∑
j=1

n∑
i=1

µif
j
i

(
ξ log

µif
j
i∑

i′ µi′f
j
i′

+ (1− ξ) log
µif

gj
i∑

i′ µi′f
gj
i′

)
−

n∑
i=1

µi log µi,

where f gj
i ≡

∑
j′∈gj f

j′

i . The derivative of this cost with respect to f j
i is given by

∂Cµ

∂f j
i

= µi

(
ξ log qji + (1− ξ) log q

gj
i

)
,

where qgj denote the posterior given observing the nest gj . Suppose for some experiment f , it
holds that qj = qk = qgk ̸= qgj . Then

⟨∇Cµ(f), f
j→k⟩ =

n∑
i=1

µif
j
i

(
ξ log qki + (1− ξ) log qgki − ξ log qji − (1− ξ) log q

gj
i

)
= (1− ξ)

n∑
i=1

µif
j
i

(
log qji − log q

gj
i

)
> 0.

Hence, the Bregman information cost violates decreasing in signal replacement. In other words, a
signal replacement that reduces informativeness can lead to a higher information cost, showing that
the Bregman cost could fail both Blackwell and Lehmann monotonicity under a local perturbation
of the experiment.

4.4 State-wise Divergence Costs

Some recent papers in the literature such as Pomatto et al. (2023) and Bordoli and Iijima (2025)
focus on information costs that are defined in terms of statistical divergences between probability
distributions over signals across states. Specifically, let D(fi∥fi′) denote a statistical divergence
between the probability distributions fi and fi′ over the signals. We say that an information cost
function is a state-wise divergence cost if it is a monotone increasing function of D(fi∥fi′) for all
i, i′ ∈ {1, . . . , n}.

The Log-Likelihood Ratio (LLR) cost introduced in Pomatto et al. (2023) is a positive lin-
ear combination of Kullback-Leibler (KL) divergence between states. Bordoli and Iijima (2025)
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consider both the Rényi divergence and the KL divergence across states and define costs as the
maximum of the divergences across all pairs of states. Hence, both of these costs are state-wise
divergence costs.

While our conditions may be used to verify Blackwell and Lehmann monotonicity of state-
wise divergence costs, we note that their monotonicity can be established more directly using the
properties of the divergence. A statistical divergence satisfies the data-processing inequality if the
divergence between two distributions decreases under a garbling of the signals. This property is
known to hold for many commonly used divergences, such as KL divergence, Rényi divergence,
and more generally the f -divergence (Polyanskiy and Wu, 2022). As a result, whenever the data-
processing inequality holds, the Blackwell monotonicity holds by definition and the Lehmann
monotonicity can be established using the Blackwell on dichotomies characterization by Jewitt
(2007).

5 Conclusion

As models of costly information acquisition become increasingly central to economic theory, so
too does the need for well-founded cost functions. The principle of monotonicity—that more
information should be more costly—is a bedrock assumption in virtually all such models. Yet,
while this principle is a key ingredient in many characterizations of cost functions, its standalone
implications, when isolated from other axioms, have been less explored. This gap in understanding
is particularly acute for the Lehmann order; despite being the natural relaxation of the Blackwell
criterion for the large class of monotone decision problems, the conditions required for Lehmann
monotonicity have remained largely unexplored.

This paper has aimed to unpack this fundamental property. By isolating monotonicity and
characterizing it through simple, local conditions, we provide a more transparent and workable
foundation for the analysis of information costs. We hope that by clarifying what monotonicity
requires on its own—and just as importantly, what it does not—our work can serve as a stepping
stone. It offers a more flexible toolkit for researchers to build, verify, and apply cost functions
in diverse economic environments, particularly for the large class of monotone problems where a
full analysis was previously intractable. By strengthening the foundations, we hope to foster more
robust and targeted applications of costly information acquisition in economics.
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Appendix

A Proofs for Section 2

A.1 Absolute Continuity

All results in Section 2 do not need the cost function C to be differentiable. For any absolutely
continuous cost function C, let D+C(f ;h) denote its (one-sided) directional derivative at f ∈ E2
in the direction of h ∈ Rn, if the following limit exists:

D+C(f ;h) ≡ lim
ϵ↓0

C(f + ϵh)− C(f)

ϵ
.

In this case, we rewrite (1) and (2) as

D+C(f ;1− f) ≤ 0; (A.1)

D+C(f ;−f) ≤ 0. (A.2)

Similarly, (7) and (8) can be rewritten as

D+C(f ; (1− f)≤l) ≤ 0, if fl < fl+1; (A.3)

D+C(f ; (−f)≥l) ≤ 0, if fl−1 < fl. (A.4)

Importantly, absolute continuity implies that the Fundamental Theorem of Calculus (FTC)
holds, i.e., for φ(t) = C(tg + (1− t)f) for t ∈ [0, 1], we have

C(g)− C(f) = φ(1)− φ(0) =

∫ 1

0

φ′(t)dt =

∫ 1

0

D+C(tg + (1− t)f ; g − f)dt. (A.5)

A.2 Blackwell Monotonicity: Proof of Theorem 1

Lemma A.1. For any f, g ∈ E2 such that f ⪰B g, there exists 1 ≥ a ≥ b ≥ 0 such that either

g = af + b(1− f) or 1− g = af + b(1− f). (A.6)
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Let g satisfy the first equation of (A.6) and f ′ = a−b
1−b

f .24 Then, for all λ ∈ [0, 1],

f ⪰B (1− λ)f + λf ′ ⪰B f ′, and (A.7)

f ′ ⪰B (1− λ)f ′ + λg ⪰B g. (A.8)

Proof of Lemma A.1. Recall that f ⪰B g implies that there exist (a, b) ∈ [0, 1]2 such that g =

af + b(1− f). If a ≥ b, the first equation of (A.6) holds. If a < b, notice 1− g = a′f + b′(1− f)

for a′ = 1− a > 1− b = b′.
When b = 1, a = 1 and g = f + (1− f) = 1 = f ′. (A.8) holds. Notice that (1− λ)f + λ1 =

1 · f + λ(1− f) ∈ PARL(f,1− f), thus, f ⪰B (1− λ)f + λ1. Similarly, (1− λ)f + λ1 ⪰B 1.
(A.7) holds.

When b < 1, a−b
1−b

∈ [0, 1] and f ⪰B f ′. For any λ ∈ [0, 1], f ⪰B λf + (1− λ)f ′ follows from
the convexity of PARL(f,1− f). Next, notice that

f ′ =
a−b
1−b

1− λ+ λa−b
1−b

((1− λ)f + λf ′).

Since
a−b
1−b

1− λ+ λa−b
1−b

∈ [0, 1],

we have f ′ ∈ PARL(((1− λ)f + λf ′),1− ((1− λ)f + λf ′)), and thus (1− λ)f + λf ′ ⪰B f ′.
From g = af + b(1− f),

g =
a− b

1− b
f + b

(
1− a− b

1− b
f

)
= f ′ + b(1− f ′).

Thus f ′ ⪰B g and g − f ′ = b(1− f ′). Similarly, f ′ ⪰B (1− λ)f ′ + λg ⪰B g.

Proof of Theorem 1. Necessity is proved in the main text.
For sufficiency, take any f ⪰B g. First, permutate g if needed to have g satisfy the first equation

of (A.6). Permutation invariance ensures the cost stays the same. Defineφ1(λ) ≡ C((1−λ)f+λf ′)

and φ2(λ) ≡ C((1 − λ)f ′ + λg). Absolute continuity implies that φ1 is differentiable almost
everywhere, and satisfies

φ′
1(λ) = D+C((1− λ)f + λf ′;−f + f ′),

24When b = 1, define f ′ = 1.
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when it is differentiable. On the other hand,

−f + f ′ = −
1−a
1−b

1− λ+ λa−b
1−b

((1− λ)f + λf ′).

Therefore, φ′
1(λ) has the same sign as D+C((1− λ)f + λf ′;−((1− λ)f + λf ′)) and is negative

by (A.2). The FTC implies

C(f ′) = φ1(1) = φ1(0) +

∫ 1

0

φ′
1(λ)dλ ≤ φ1(0) = C(f).

Similarly, observe that

φ′
2(λ) = D+C((1− λ)f ′ + λg;−f ′ + g),

−f ′ + g = b(1− f ′) =
b

1− λb
(1− ((1− λ)f ′ + λg)) .

Then, φ′
2(λ) is non-positive since it has the same sign asD+C((1−λ)f ′+λg;1−((1−λ)f ′+λg)).

By applying the FTC, C(g) = φ2(1) ≤ φ2(0) = C(f ′). Therefore, C(g) ≤ C(f).

A.3 Lehmann Monotonicity

A.3.1 Proof of Lemma 2

Proof of Lemma 2. Note that for y ∈ [0, 1] and 1 ≤ i ≤ n,

F̃−1(G̃(y|ωi)|ωi) =


1−gi
1−fi

y, if y ≤ 1−fi
1−gi

,

1 + (1−gi)y−(1−fi)
fi

, if y > 1−fi
1−gi

.

Additionally, if y ∈ (1, 2],

F̃−1(G̃(y|ωi)|ωi) =


1−gi
1−fi

+ gi(y−1)
1−fi

, if y ≤ 2− fi
gi
,

2− gi(2−y)
fi

, if y > 2− fi
gi
.

In particular, when fi ≤ gi, as illustrated in Figure 4a, F̃−1(G̃(·|ωi)|ωi) is composed of three
line segments connecting the vertices (0, 0), (1, 1−gi

1−fi
), (2 − fi

gi
, 1) and (2, 2). The curve passes

through the lower-right unit square defined by coordinates (1, 0) and (2, 1).
When fi > gi, as illustrated in Figure 4b, F̃−1(G̃(·|ωi)|ωi) is composed of three line segments

connecting (0, 0), (1−fi
1−gi

, 1), (1, 2 − gi
fi
) and (2, 2). The curve passes through the upper-left unit
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y

1

1

2

2

slope : 1−gi
1−fi

slope : gi
fi

(a) fi ≤ gi

y

1

1

2

2

slope : 1−gi
1−fi

slope : gi
fi

(b) fi > gi

Figure 4: The graphs of F̃−1(G̃(y|ωi)|ωi)

square defined by coordinates (0, 1) and (1, 2).
Notice that the slope of the first line segment is 1−gi

1−fi
and that of the last line segment is gi

fi
.

The middle line segment is determined by the intersections of these lines and the lower-right or
upper-left unit squares.

Using this property, we can see that F̃−1(G̃(y|ωi)|ωi) ≤ F̃−1(G̃(y|ωi+1)|ωi+1) for all y ∈ [0, 2]

if and only if the slopes of the first and last line segments under ωi+1 are steeper than those under
ωi, which is equivalent to condition (6).

A.3.2 Proof of Lemma 3

Proof of Lemma 3. Consider any f ∈ EMLRP
2 and 1 ≤ l ≤ n such that fl < fl+1. Define ϵ′ ≡

fl+1−fl
1−fl

∈ (0, 1], then we have fl+ϵ′ ·(1−fl) = fl+1. For any ϵ ∈ (0, ϵ′], let g denote f+ϵ·(1−f)≤l.
Then,

gi
fi

=

1− ϵ+ ϵ
fi
, if i ≤ l,

1, if i > l.

Since fi is increasing in i, gi
fi

is decreasing in i. Also note that

1− gi
1− fi

=

1− ϵ, if i ≤ l,

1, if i > l.

This implies that 1−gi
1−fi

is increasing in i, i.e., (6) holds for all 1 ≤ i ≤ n− 1. Therefore, f ⪰L g by
Lemma 2.
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Next, consider an experiment f ∈ EMLRP
2 and 1 ≤ l ≤ n such that fl−1 < fl and define

ϵ′′ = fl−fl−1

fl
. Let g denote f + ϵ · (−f)≥l. Then,

gi
fi

=

1, if i < l,

1− ϵ, if i ≥ l,

thus, gi
fi

is decreasing in i. Also note that

1− gi
1− fi

=

1, if i < l,

1 + ϵ
1−fi

, if i ≥ l.

Since 1− fi is decreasing in i, thus, 1−gi
1−fi

is increasing in i. Therefore, f ⪰L g by Lemma 2.

A.3.3 Proof of Theorem 2

Lemma A.2. Suppose that f, g ∈ EMLRP
2 and f ⪰L g. Then, there exist 0 ≤ k ≤ n, 1 ≥ ϵ1 ≥

· · · ϵk ≥ 0 and 1 ≥ ϵn ≥ · · · ≥ ϵk+1 ≥ 0 such that

[1− gi, gi] = [1− fi, fi]

[
1− ϵi ϵi

0 1

]
(A.9)

when 1 ≤ i ≤ k, and

[1− gi, gi] = [1− fi, fi]

[
1 0

ϵi 1− ϵi

]
(A.10)

when k + 1 ≤ i ≤ n.

Proof of Lemma A.2. Define k ≡ max ({i : gi ≥ fi} ∪ {0}) .
For 1 ≤ i ≤ k, set ϵi = 1− 1−gi

1−fi
. Then, (A.9) holds by definition. Additionally, by f ⪰L g and

Lemma 2, 1−gi
1−fi

is increasing in i, thus, ϵi is decreasing in i. Last, by the definition of k, ϵk ≥ 0.
Next, for k + 1 ≤ i ≤ n, set ϵi = 1 − gi

fi
. Then, (A.10) holds by definition. Additionally, by

f ⪰L g and Lemma 2, gi
fi

is decreasing in i, thus, ϵi is increasing in i. Last, by the definition of k,
ϵk+1 ≥ 0.

Proof of Theorem 2. Suppose that f ⪰L g, k ≡ max ({i : gi ≥ fi} ∪ {0}), and (ϵi)
n
i=1 is defined
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from Lemma A.2. Let ei =
ϵi−ϵi+1

1−ϵi+1
for all 1 ≤ i ≤ k − 1, ek = ϵk. Then, we have

[
1− ϵi ϵi

0 1

]
=

[
1− ek ek

0 1

]
· · ·

[
1− ei ei

0 1

]
.

Likewise, let ek+1 = ϵk+1 and ei =
ϵi−ϵi−1

1−ϵi−1
for all k + 1 ≤ i ≤ n. Then, we also have

[
1 0

ϵi 1− ϵi

]
=

[
1 0

ek+1 1− ek+1

][
1 0

ek+2 1− ek+2

]
· · ·

[
1 0

ei 1− ei

]
.

Using these, define hk ≡ f + ek · (1− f)≤k, and for 1 ≤ i ≤ k − 1, define

hi ≡ hi+1 + ei · (1− hi+1)≤i

Then, from (A.3) and the FTC, we have

C(f) ≥ C(hk) ≥ · · · ≥ C(h1). (A.11)

Next, define hk+1 ≡ h1 + ek+1 · (−h1)≥k+1, and for k + 2 ≤ i ≤ n, define

hi ≡ hi−1 + ei · (−hi−1)≥i.

Then, from (A.4) and the FTC, we have

C(h1) ≥ C(hk+1) ≥ · · · ≥ C(hn).

Note that hn = g. Then, from (A.11) and (A.3.3), we have C(f) ≥ C(g).

B Proofs for Section 3

B.1 Blackwell Monotonicity

B.1.1 Proof of Theorem 3

Proof of Theorem 3. Suppose that f ∈ Em, g ∈ Em′ and f ⪰B g, i.e., there exists an m × m′

stochastic matrix g = fM . Note that for any 1 ≤ k ≤ m′,

gk =
m∑
j=1

Mk
j f

j, (B.1)
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and
∑m

k=1M
k
j = 1. Define ϕ : [0, 1] → Em+m′ as follows:

ϕ(t) ≡
[
(1− t)f tg

]
.

By split invariance and permutation invariance, we have

C(f) = C(ϕ(0)) and C(g) = C(ϕ(1)).

For t ∈ (0, 1), observe that from g = fM ,

ϕ′(t) =
[
−f g

]
=

m∑
j=1

m′∑
k=1

Mk
j

0 · · ·

j-th column︷︸︸︷
−f j · · ·

m+k-th column︷︸︸︷
f j · · · 0


=

m∑
j=1

m′∑
k=1

Mk
j

(1− t)
ϕ(t)j→m+k.

Let Cm+m′ denote the restriction of C to Em+m′ . Then, we have

d

dt
C(ϕ(t)) = ⟨∇Cm+m′(ϕ(t)), ϕ′(t)⟩ =

m∑
j=1

m′∑
k=1

Mk
j

(1− t)
⟨∇Cm+m′(ϕ(t)), ϕ(t)j→m+k⟩ ≤ 0,

where the inequality follows from Mk
j ≥ 0 and ⟨∇Cm+m′(ϕ(t)), ϕ(t)j→m+k⟩ ≤ 0 holds by de-

creasing in signal replacement. Therefore, by FTC, we have

C(g) = C(ϕ(1)) = C(ϕ(0)) +

∫ 1

0

d

dt
C(ϕ(t))dt ≤ C(ϕ(0)) = C(f).

B.2 Lehmann Monotonicity

B.2.1 Geometric Characterization of the Lehmann Order

Given an experiment f ∈ EMLRP
m , we begin by defining a continuous experiment f̃ : Ω →

∆([0,m]) associated with f as in the binary setup. For any ωi ∈ Ω and x ∈ [0,m], the cumu-
lative distribution of f̃ is

F̃ (x|ωi) = F
⌊x⌋
i + (x− ⌊x⌋) · f ⌊x⌋+1.

Note that F̃ (0|ω) = 0 and F̃ (m|ω) = 1 for all ω ∈ Ω.
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Given this associated continuous experiment, we can formally define Si(f) for all f ∈ EMLRP :

Si(f) ≡
{
(x, y) ∈ [0, 1]2 : F̃−1(y|ωi+1) ≥ F̃−1(x|ωi)

}
. (B.2)

Lemma B.1 (Jewitt (2007)). Suppose that f, g ∈ EMLRP . f ⪰L g is equivalent to Si(g) ⊆ Si(f)

for all 1 ≤ i ≤ n− 1.

Proof of Lemma B.1. For any x ∈ [0, 1], the y-coordinate of the lower boundary points for Si(f)

and Si(g) are F̃ (F̃−1(x|ωi)|ωi+1) and G̃(G̃−1(x|ωi)|ωi+1). Therefore, Si(g) ⊆ Si(f) is equivalent
to

G̃(G̃−1(x|ωi)|ωi+1) ≥ F̃ (F̃−1(x|ωi)|ωi+1)

for all x ∈ [0, 1]. Substituting in x = G̃(y|ωi) and applying F̃−1(·|ωi+1) to both sides yields

F̃−1(G̃(y|ωi+1)|ωi+1) ≥ F̃−1(G̃(y|ωi)|ωi).

Therefore, Si(g) ⊆ Si(f) for all 1 ≤ i ≤ n − 1 is equivalent to F̃−1(G̃(y|ωi)|ωi) is increasing in
i, i.e., f is Lehmann more informative than g.

B.2.2 Proof of Lemma 4

Proof of Lemma 4. Suppose that f ∈ EMLRP
m and f j+1

l f j+1
l+1 > f j

l+1f
j+1
l for some l and j. Let

ϵ′ =
fj
l f

j+1
l+1 −fj+1

l fj
l+1

fj
l (f

j+1
l+1 +fj

l+1)
∈ (0, 1], where we f j

n+1 = 0 and f j+1
n+1 = 1. Then for all ϵ ∈ [0, ϵ′], f ′ =

f + ϵf j→j+1
≤l ∈ EMLRP

m . To see this, notice ϵ′ is chosen such that the MLRP holds with equality for
the i-th and (i+ 1)-th row for f + ϵ′f j→j+1

≤l , and the MLRP for all other pairs of states and signals
are preserved under this operation.

We next show f ⪰L f+ϵf
j→j+1
≤l . Note that for any i > l, fi = f ′

i . Therefore, F̃−1(F̃ ′(y|ωi)|ωi) =

y for all i > l and y ∈ [0,m]. Next, consider the case with i ≤ l.

1. If y ≤ j− 1 or y ≥ j+1, F̃ ′(y|ωi) = F̃ (y|ωi), or equivalently, F̃−1(F̃ ′(y|ωi)|ωi) = y, thus,
F̃−1(F̃ ′(y|ωi)|ωi) is constant across i in this case.

2. If j − 1 < y ≤ j, F̃ ′(y|ωi) = F̃ (j − 1|ωi) + (y − j + 1)(1− ϵ)f j
i , thus,

F̃−1(F̃ ′(y|ωi)|ωi) = j − 1 + (y − j + 1)(1− ϵ) = (j − 1)ϵ+ y(1− ϵ) < y.

Therefore, F̃−1(F̃ ′(y|ωi)|ωi) is increasing in i.

3. If j < y < j + 1,

F̃ ′(y|ωi) = F̃ (j − 1|ωi) + (1− ϵ)f j
i + (y − j)(ϵf j

i + f j+1
i ).
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i+ 1

Si(f)

F j
i,i+1
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i,i+1

F j+2
i,i+1
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i,i+1

F j+2
i,i+1

(a) Si+1(2)
Si(1)

≥ Si+1(3)
Si(3)

i

i+ 1

Si(f)

F j
i,i+1

F j+1
i,i+1

F j+2
i,i+1

F j+3
i,i+1

(b) Si+1(2)
Si(1)

< Si+1(3)
Si(3)

Figure 5: Operations of shrinking Si(f)

Define Li = f j+1
i /f j

i , then Li is increasing in i.

F̃−1(F̃ ′(y|ωi)|ωi) =

j − ϵ+ (y − j)(ϵ+ Li), if j < y ≤ j + ϵ
ϵ+Li

,

y − (j + 1− y) ϵ
Li
, if j + ϵ

ϵ+Li
< y < j + 1,

or equivalently, F̃−1(F̃ ′(y|ωi)|ωi) = max{j− ϵ+(y− j)(ϵ+Li), y− (j+1− y) ϵ
Li
}. Since

both functions are increasing in Li, F̃−1(F̃ ′(y|ωi)|ωi) is increasing for i ≤ l. Additionally,
for j < y ≤ j + ϵ

ϵ+Li
, y > j ≥ j − ϵ + (y − j)(ϵ + Li), and for j + ϵ

ϵ+Li
< y < j + 1,

y > y − (j + 1 − y) ϵ
Li

. Since F̃−1(F̃ ′(y|ωi)|ωi) = y for i > l, F̃−1(F̃ ′(y|ωi)|ωi) = y is
increasing in i.

We can similarly prove the case with f ′ = f+ϵf j→j−1
≥l where ϵ′′ =

fj−1
l−1 fj

l −fj−1
l fj

l−1

fj
l (f

j−1
l−1 +fj

l−1)
∈ (0, 1].

B.2.3 Proof of Theorem 4

Lemma B.2. Suppose that C : EMLRP → R+ is differentiable, split invariant, and decreasing in

reverse signal replacement. For any f ∈ EMLRP
m , 1 ≤ i ≤ n and 1 ≤ j + 1 < k ≤ m, there

exists f̃ ∈ EMLRP such that (i) C(f) ≥ C(f̃); (ii) Si′(f) = Si′(f̃) for all i′ ̸= i; and (iii) Si(f̃)

is obtained from Si(f) by removing the region below the line segment connecting the points F j
i,i+1

and F k
i,i+1.

Proof of Lemma B.2. Define

Si(p) ≡
p∑

s=1

f j+s
i , Si+1(p) ≡

p∑
s=1

f j+s
i+1 .
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First, consider the case where k = j + 2. Assume that Si+1(2)
Si+1(2)

> Si+1(1)
Si(1)

; otherwise, F j
i,i+1,

F j+1
i,i+1 and F j+2

i,i+1 already aligned, making this case trivial. Our goal is to construct a series of
MLRP experiments, obtained through combinations of reverse signal replacements, that ultimately
remove the region below the segment connecting F j

i,i+1 and F j+2
i,i+1, as shown by the black arrows

in Figure 5.
Define

lt ≡ (1− t) · Si+1(1)

Si(1)
+ t · Si+1(2)

Si(2)
.

Note that the slopes of F j
i,i+1F

j+1
i,i+1 and F j

i,i+1F
j+2
i,i+2 correspond to l0 and l1, respectively.

Define ϕ : [0, 1] → Em+1 as follows:

ϕ(t) ≡

[
· · · , f j,

(1− at)f
j+1
≤i

+f j+1
≥i+1

,
atf

j+1
≤i

+btf
j+2
≥i+1

,
f j+2
≤i +

(1− bt) f
j+2
≥i+1

, f j+3, · · ·

]

where

at ≡ 1−
f j+1
i+1 /f

j+1
i

lt
and bt ≡

lt

f j+2
i+1 /f

j+1
i

−
f j+1
i+1

f j+2
i+1

.

Let Φ(t) denote the cumulative distributions of ϕ(t): Φ(t)l =
∑l

r=1 ϕ(t)
r. Note that Φ(t)j = F j

and Φ(t)j+3 = F j+2.
The transformation ϕ(t) splits signal j+1 in states i′ ≤ i, and splits signal j+2 in states i′ > i.

Thus, for any i′ ̸= i, Si′(ϕ(t)) = Si′(f). It remains to analyze how Si(ϕ(t)) changes with t.
Intuitively speaking, ϕ(t) represents a rotation of F j

i,i+1F
j+1
i,i+1 around F j

i,i+1, with the slope
being lt. In the process, it splits the signal j + 1 into two parts. More formally, observe that
a0 = b0 = 0, thus,

ϕ(0) = [f 1, · · · , f j+1,0, f j+2, · · · , fm] ≃B f.

Φ(t)j+1
i,i+1 is the intersection of the line through F j

i,i+1 with slope lt and the horizontal line through
F j+1
i,i+1, while Φ(t)j+2

i,i+1 is its intersection with the vertical line through F j+1
i,i+1. That is, the likelihood

ratios for ϕ(t)j+1
i,i+1 and ϕ(t)j+2

i,i+1 are equal to lt, while that for ϕ(t)j+3
i,i+1 is greater than or equal to

lt. Therefore, ϕ(t) ∈ EMLRP
m+1 for all t ∈ [0, 1]. Last, when t = 1, lt corresponds to the slope of

F j
i,i+1F

j+2
i,i+1, i.e., Si(ϕ(1)) is obtained from Si(f) by removing the region below F j

i,i+1F
j+2
i,i+1.

We now show that C(f) ≥ C(ϕ(1)). Observe that

ȧt =
f j+1
i+1 /f

j+1
i

l2t
·
(
Si+1(2)

Si(2)
− Si+1(1)

Si(1)

)
> 0,

ḃt =
f j+1
i

f j+2
i+1

·
(
Si+1(2)

Si(2)
− Si+1(1)

Si(1)

)
> 0.
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Then, by decreasing in reverse signal replacement, we have

d

dt
Cm+1(ϕ(t)) =

i∑
i′=1

ȧt

(
−∂Cm+1

∂hj+1
i′

+
∂Cm+1

∂hj+2
i′

)
f j+1
i′ +

n∑
i′=i+1

ḃt

(
−∂Cm+1

∂hj+3
i′

+
∂Cm+1

∂hj+2
i′

)
f j+2
i′

=⟨∇Cm+1(ϕ(t)),
ȧt

1− at
ϕ(t)j+1→j+2

≤i ⟩+ ⟨∇Cm+1(ϕ(t)),
ḃt

1− bt
ϕ(t)j+3→j+2

≥i+1 ⟩ ≤ 0. 25

Therefore,

C(ϕ(1)) = Cm+1(ϕ(0)) +

∫ 1

0

d

dt
Cm+1(ϕ(t))dt ≤ Cm+1(ϕ(0)) = C(f).

Next, we prove the case for k = j + 3. Using the argument from the k = j + 2 case, we can
remove the region below F j

i,i+1F
j+2
i,i+1 and let f ′ ∈ EMLRP

m+1 denote the corresponding experiment.
We consider two subcases: (i) Si+1(2)

Si(1)
≥ Si+1(3)

Si(3)
; (ii) Si+1(2)

Si(1)
< Si+1(3)

Si(3)
.

In the first case, define

l̃t ≡ (1− t) · Si+1(2)

Si(2)
+ t · Si+1(3)

Si(3)
.

Also define ϕ : [0, 1] → EMLRP
m+2 :

ϕk(t) ≡



fk, if k ≤ j,

(1− a1t )f
j+1
≤i + f j+1

≥i+1, if k = j + 1,

a1tf
j+1
≤i + b1tf

j+2
≥i+1, if k = j + 2,

(1− a2t )f
j+2
≤i + (1− b1t )f

j+2
≥i+1, if k = j + 3,

a2tf
j+2
≤i + b2tf

j+3
≥i+1, if k = j + 4,

f j+3
≤i + (1− b2t )f

j+3
≥i+1, if k = j + 5,

fk−2, if k = j + 6,

(B.3)

where

apt ≡ 1− 1

f j+p
i

·
(
Si+1(p)

l̃t
− Si(p− 1)

)
and

bpt ≡
1

f j+p+1
i+1

·
(
l̃t · Si(p)− Si+1(p)

)
,

(B.4)

25Here, we use h to distinguish from the original experiment f .
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for all p ∈ {1, 2}. This series of experiments is illustrated by the red arrows in Figure 5a. Again,
ϕ(t) is constructed by rotating the black dashed line through F j

i,i+1 with slope l̃t. Thus, the MLRP
holds.

Note that ϕ(0) is Blackwell equivalent to f ′ and ϕ(1) corresponds to the experiment after
removing the region below F j

i,i+1F
j+3
i,i+1, i.e., ϕ(1) = f̃ . Using the MLRP of f and Si+1(2)

Si(1)
≥ Si+1(3)

Si(3)
,

1 ≥ apt ≥ 0 and 1 ≥ bpt ≥ 0. Additionally, it can be shown that both ȧt and ḃt are nonnegative.
Then, we apply the same argument as in k = j + 2 to establish that C(f) ≥ C(f ′) ≥ C(ϕ(1)) =

C(f̃).

Now we consider the case where Si+1(2)
Si(1)

< Si+1(3)
Si(3)

. The operation here takes two steps. We first
keep rotating the black dashed line in Figure 5b until it reaches the point where the slope is equal
to Si+1(2)

Si(1)
, i.e., the intersection of the two red arrows. Formally, define

l̃t ≡ (1− t) · Si+1(2)

Si(2)
+ t · Si+1(2)

Si(1)

and ϕ : [0, 1] → EMLRP
m+2 using (B.3) and (B.4) with modified l̃. With the same argument as in the

previous cases, it can be shown that C(f) ≥ C(ϕ(1)).
Next, we keep rotating the black dashed line as indicated by the blue arrows in Figure 5b.

Formally, define

l̂t ≡ (1− t) · Si+1(2)

Si(1)
+ t · Si+1(3)

Si(3)
.

Then, consider a function ϕ̂ : [0, 1] → EMLRP
m+2 as follows:

ϕ̂k(t) ≡



fk, if k ≤ j,

(1− a1t )f
j+1
≤i + f j+1

≥i+1, if k = j + 1,

(a1t − a2t )f
j+1
≤i + f j+2

≥i+1, if k = j + 2,

a2tf
j+1
≤i + b2tf

j+3
≥i+1, if k = j + 3,

f j+2
≤i + (b3t − b2t )f

j+3
≥i+1, if k = j + 4,

f j+3
≤i + (1− b3t )f

j+3
≥i+1, if k = j + 5,

fk−2, if k = j + 6,

(B.5)
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where

apt ≡ 1− Si+1(p)/Si(1)

l̂t
and

bpt ≡
l̂t · Si(p− 1)− Si+1(2)

f j+3
i+1

.

(B.6)

Since ϕ̂(t) is constructed using the line through F j
i,i+1 with slope l̂t, the MLRP holds. Additionally,

ϕ̂(0) is Blackwell equivalent to ϕ(1) and ϕ̂(1) corresponds to f̃—the experiment such that Si(f̃)

is obtained from Si(f) by removing the region below the line segment connecting F j
i,i+1F

j+3
i,i+1.

Note that 1 > a1t > a2t ≥ 0, 1 > b3t > b2t ≥ 0 and ȧpt , ḃ
p
t > 0. Again, by decreasing in reverse

signal replacement, we have

d

dt
Cm+2(ϕ̂(t)) =

i∑
i′=1

ȧ1t

(
−∂Cm+2

∂hj+1
i′

+
∂Cm+2

∂hj+2
i′

)
f j+1
l +

i∑
i′=1

ȧ2t

(
−∂Cm+2

∂hj+2
i′

+
∂Cm+2

∂hj+3
i′

)
f j+1
i′

+
n∑

i′=i+1

ḃ2t

(
−∂Cm+2

∂hj+4
i′

+
∂Cm+2

∂hj+3
i′

)
f j+3
i′ +

n∑
i′=i+1

ḃ3t

(
−∂Cm+2

∂hj+5
i′

+
∂Cm+2

∂hj+4
i′

)
f j+3
i′

=⟨∇Cm+2,
ȧ1t

1− a1t
ϕ̂(t)j+1→j+2

≤i ⟩+ ⟨∇Cm+2,
ȧ2t

a1t − a2t
ϕ̂(t)j+2→j+3

≤i ⟩

+ ⟨∇Cm+2,
ḃ2t

b3t − b2t
ϕ(t)j+4→j+3

≥i+1 ⟩+ ⟨∇Cm+2,
ḃ3t

1− b3t
ϕ(t)j+5→j+4

≥i+1 ⟩ ≤ 0.

Using the same FTC argument, we have

C(f̃) = C(ϕ̂(1)) ≤ C(ϕ̂(0)) = C(ϕ(1)) ≤ C(f ′) ≤ C(f).

Finally, we argue that these arguments apply to all k > j + 3. As illustrated, the key is to
construct a series of MLRP experiments by rotating the line through F j

i,i+1 until it reaches a point
like F j+1

i,i+1 (as in case (i) above), or (F j+1
i , F j+2

i+1 ) (as in case (ii) above). Whenever such a point
is encountered, we have shown ways to further split that point into two parts, thus allowing us to
continue the rotation until it reaches the point F k

i,i+1. At the end of this process, we obtain a new
experiment f̃ ∈ EMLRP such that Si(f̃) is obtained from Si(f) by removing the region below the
line segment connecting F j

i,i+1 and F k
i,i+1.

Proof of Theorem 4. Consider two experiments f, g ∈ EMLRP with f ⪰L g, that is, Si(g) ⊆ Si(f)

for all 1 ≤ i ≤ n− 1. Our goal is to show that C(f) ≥ C(g).

38



We begin by extending the line segment G0
1,2G

1
1,2 in S1(g) until it intersects the boundary of

S1(f). We can construct an experiment f ′ that is Blackwell equivalent to f and includes this
intersection. Specifically, if the intersection lies on F k−1

1,2 F k
1,2, we can split the k-th signal of f so

that the new k-th cumulative point (F ′)k1,2 matches the intersection. Then, by Lemma B.2, we can
remove the region below G0

1,2G
1
1,2 from S1(f), and reduce the cost at the same time.

This procedure can be applied iteratively along each segment Gi
1,2G

i+1
1,2 for 1 ≤ i ≤ m − 1.

Then, the resulting experiment, f̂ , has a strictly lower cost and satisfies S1(f̂) = S1(g). Repeating
this for S2, · · · ,Sn, we can obtain an experiment f that has a lower cost than f and has the same
Si as g for all 1 ≤ i ≤ n− 1. Then by Lemma B.1, we have f ≃L g.

Finally, we show that f and g can be made identical by splitting some of their signals. Suppose
for some signal j and s such that F

j
= Gs (which always exists as one start with j = s = 0).

Suppose that for some i, f
j+1

i > gs+1
i (if no such i exists, we move on to j+1 and s+1). Because

Si(f) = Si(g), it must hold that f
j+1
i+1

f
j+1
i

=
gs+1
i+1

gs+1
i

, which further implies f
j+1

i+1 ≥ gs+1
i , where equality

holds only if both are zero. By applying the same reasoning inductively, we conclude the same
holds for all i. Thus, a splitting of f

j+1
would yield a signal ĵ such that F

ĵ
= Gs+1. Repeating

this argument inductively for the remaining signals establishes that f and g can be made identical.
Therefore, splitting invariance implies C(g) = C(f) ≤ C(f).

C Proof for Section 4

C.1 Proof of Proposition 2

Proof of Proposition 2. Sufficiency of (i) is proved in the main text and necessity is proved in
Online Appendix OA.4.1. For (ii), take any f ∈ EMLRP

m and j, notice f j and f j+1 satisfy the
condition for h and h′, thus decreasing in reverse signal replacement holds.

C.2 Proof of Proposition 3

Proof of Proposition 3. (i) Consider the function ψ(h) =
√
h⊺Ah. It is sublinear when A is sym-

metric and positive semi-definite. Consider the following A:

A =

10 10 10

10 20 10

10 10 20

 .
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It’s eigenvalues are approximately (37.3, 10, 2.7), thus is positive definite. Let

f =

.78 .1 .1 .02

.2 .3 .4 .1

.05 .1 .3 .55

 ∈ EMLRP
4 .

Then we have

⟨∇C(f), f 2→3
≤1 ⟩ =

(
−∂ψ(f

2)

∂f 2
1

+
∂ψ(f 3)

∂f 3
1

)
f 2
1 > 0.0008 > 0,

i.e., the likelihood separable cost function with this ψ does not satisfy decreasing in reverse signal
replacement, and thus not Lehmann monotone.

(ii) Consider ψ(h) = (
∑n

i=1wih
p
i )

1/p, notice that we have

∂ψ(h)

∂hi
=

wih
p−1
i

(
∑n

i=1wih
p
i )

(p−1)/p
.

Then for any h ≤MLRP h
′ and for any l ∈ {1, . . . , n}, we have

l∑
i=1

(
∂ψ(h′)

∂h′i
− ∂ψ(h)

∂hi

)
hi =

l∑
i=1

(
wi(h

′
i)
p−1

(
∑n

i=1wi(h′i)
p)

(p−1)/p
− wih

p−1
i

(
∑n

i=1wih
p
i )

(p−1)/p

)
hi

=

∑l
i=1wi(h

′
i)
p−1hi

(
∑n

i=1wi(h′i)
p)

(p−1)/p
−

∑l
i=1wih

p
i

(
∑n

i=1wih
p
i )

(p−1)/p
.

To show that this is negative, it is equivalent to showing that(
l∑

i=1

wi(h
′
i)
p−1hi

)p( n∑
i=1

wih
p
i

)p−1

≤

(
l∑

i=1

wih
p
i

)p( n∑
i=1

wi(h
′
i)
p

)p−1

.

Then by Hölder’s inequality with weights (Theorem 4.7.2. in Casella and Berger (2002)), we have(
l∑

i=1

wi(h
′
i)
p−1hi

)p

≤

(
l∑

i=1

wi(h
′
i)
p

)p−1( l∑
i=1

wih
p
i

)
.

Thus, it suffices to show that(
l∑

i=1

wi(h
′
i)
p

)
·

(
n∑

i=1

wih
p
i

)
≤

(
l∑

i=1

wih
p
i

)
·

(
n∑

i=1

wi(h
′
i)
p

)
.
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By subtracting the common term
(∑l

i=1wi(h
′
i)
p
)(∑l

i=1wi(hi)
p
)

, we can rewrite the above in-
equality as (

l∑
i=1

wi(h
′
i)
p

)(
n∑

i=l+1

wih
p
i

)
≤

(
l∑

i=1

wih
p
i

)(
n∑

i=l+1

wi(h
′
i)
p

)
.

This inequality holds because h ≤MLRP h
′ implies that for any k ≤ l and k′ ≥ l + 1, we have

h′khk′ ≤ hkh
′
k′ .

The other condition can be shown similarly.

C.3 Proof of Proposition 4

Proof of Proposition 4. Fix any full-support prior µ and notice that if f ∈ EMLRP then qj ≤FOSD

qj+1 for all j (Milgrom, 1981). Thus, it suffices to show that the condition in Proposition 4 implies
decreasing in reverse signal replacement.

For a posterior separable cost Cµ given some H , we have

∂Cµ(f)

∂f j
i

= −µiH(qj)− τ j
∑
i′

∂H(qj)

∂qji′
· ∂q

j
i′

∂f j
i

.

Then we can further derive:

∂qji
∂f j

i

=
µi

τ j
− µi

µif
j
i

(τ j)2
,

∂qji
∂f j

s

= −µs
µif

j
i

(τ j)2
,

and that

τ jf j
i

∑
i′

∂H(qj)

∂qji′
· ∂q

j
i′

∂f j
i

= τ jf j
i

(
∂H(qj)

∂qji

(
µi

τ j
− µi

µif
j
i

(τ j)2

)
+
∑
i′ ̸=i

∂H(qj)

∂qji′

(
−µi

µi′f
j
i′

(τ j)2

))

= µif
j
i

∂H(qj)

∂qji
− µif

j
i

∑
i′

∂H(qj)

∂qji′
qji′ .

Thus, for any j and l, substituting in the above expressions yields

l∑
i=1

(
∂Cµ(f)

∂f j+1
i

− ∂Cµ(f)

∂f j
i

)
f j
i =

l∑
i=1

(
H(qj)−H(qj+1)−

∑
i′

∂H(qj+1)

∂qj+1
i′

(qji′ − qj+1
i′ )

)
µif

j
i

+ τ j
l∑

i=1

(
∂H(qj)

∂qji
− ∂H(qj+1)

∂qj+1
i

)
qji .
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Note that the first term is negative from concavity of H and the second term is negative from
the condition in the proposition. Thus, (11) holds for any j and l. A similar argument shows (12)
also holds for all j and l.

C.4 Proof of Proposition 5

Proof of Proposition 5. For the entropy cost, we have

H(qj) = −
n∑

i=1

qji log q
j
i , and

∂H(qj)

∂qji
= − log qji − 1.

Then for any l and qj ≤FOSD qj+1, we have

l∑
i=1

qji

(
∂H(qj)

∂qji
− ∂H(qj+1)

∂qj+1
i

)
=

l∑
i=1

qji
(
log qj+1

i − log qji
)

=
l∑

i=1

qji
(
log qj+1

i − log qji
)
+

(
n∑

i=l+1

qji

)(
log

n∑
i=l+1

qj+1
i − log

n∑
i=l+1

qji

)

+

(
n∑

i=l+1

qji

)(
log

n∑
i=l+1

qji − log
n∑

i=l+1

qj+1
i

)
.

Observe that the sum of the first and second term is negative because

l∑
i=1

qji log
qj+1
i

qji
+

(
n∑

i=l+1

qji

)
log

∑n
i=l+1 q

j
i+1∑n

i=l+1 q
j
i

≤ log
n∑

i=1

qj+1
i = 0

by
∑n

i=1 q
j
i =

∑n
i=1 q

j+1
i = 1 and the concavity of log function. The third term is also negative

from
∑n

i=l+1 q
j+1
i ≥

∑n
i=l+1 q

j
i as qj ≤FOSD qj+1. The other condition can be shown similarly.
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Online Appendix for
“On the Monotonicity of Information Costs”

Xiaoyu Cheng Yonggyun Kim

OA.1 Examples for the Binary-Binary Case

In this section, we provide examples of information costs in the binary-binary case. We begin by
examining examples using Proposition 1.

Example OA.1. Consider two information cost functions defined over Ê2:

C1(f1, f2) ≡
(
f2
f1

− 1

)2(
1− 1− f2

1− f1

)
, C2(f1, f2) ≡

f2(1− f2)

f1(1− f1)
− 1.

By using the definition of C̃, we have

C̃1(α, β) ≡ (α− 1)2
(
1− 1

β

)
, C̃2(α, β) ≡

α

β
− 1.

Then, from α, β ≥ 1, C̃1 is increasing in both α and β, whereas C̃2 is not increasing in β. There-
fore, it follows that C1 is Blackwell monotone, but C2 is not.

Next, imagine that in Figure 1a, we draw a curve passing through the point A to illustrate a
potential isocost curve, indicating the same information cost of a smooth cost function. When C
is differentiable at f , (1) and (2) can be rewritten as follows:

f2
f1︸︷︷︸

the slope of AB

≥ −∂C/∂f1
∂C/∂f2︸ ︷︷ ︸

the slope of
the isocost curve

≥ 1− f2
1− f1︸ ︷︷ ︸

the slope of AD

.26 (OA.1.1)

The slope of the isocost curve can be considered as the marginal rate of information transformation

(MRIT). Thus, this inequality says that the MRIT of a Blackwell monotone cost function should
fall between the two likelihood ratios provided by the experiment.

We first provide examples of verifying Blackwell monotonicity using the marginal rate of in-
formation transformation described in (OA.1.1).

26With some algebra, we can show that f2 ≥ f1 and (1) and (2) imply ∂C
∂f2

≥ 0 ≥ ∂C
∂f1

.
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Example OA.2. Consider two information cost functions defined over Ê2:

C3(f1, f2) ≡ (f2 − f1)
2, C4(f1, f2) ≡ f2 − 2f1.

Notice that
MRIT3 ≡ −∂C3/∂f1

∂C3/∂f2
= 1, MRIT4 ≡ −∂C4/∂f1

∂C4/∂f2
= 2.

Then, for C3, (OA.1.1) holds all (f1, f2) ∈ Ê2, but not so for C4, e.g., when f1 = .5 and f2 = .6.
Therefore, we can conclude that C3 is Blackwell monotone, but C4 is not.

OA.2 Non-Convexity of the MLRP set

In this section, we show that the set of MLRP experiments, EMLRP , is not convex by providing a
pair of experiments such that both experiments satisfy the MLRP, while a convex combination of
them does not.

Let n = 3 and define f, g ∈ EMLRP
3 :

f =

0.04 0.36 0.60

0.02 0.18 0.80

0.02 0.18 0.80

 and g =

0.60 0.04 0.36

0.40 0.06 0.54

0.40 0.06 0.54

 .
Observe that f and g satisfy the MLRP.

Let h be the average of f and g:

h =
1

2
f +

1

2
g =

0.32 0.20 0.48

0.21 0.12 0.67

0.21 0.12 0.67


The combined experiment h fails to satisfy the MLRP. To see this, consider the likelihood ratio for
ω2 vs. ω1.

.21

.32
>
.12

.2
<
.67

.48
.

Therefore, the set of MLRP experiments is not convex.

2



OA.3 Blackwell Monotonicity with Limited Signals

OA.3.1 Blackwell Monotonicity under Quasiconvexity

In this section, we explore Blackwell monotonicity in the case where experiments are limited to a
maximum number of signals. Specifically, we consider a cost function C : Em → R+ for a given
m, where experiments with fewer than m signals are embedded in Em by adding zero columns.

Under this restriction, split invariance is no longer relevant, as splitting an experiment would
place it outside of the domain. However, permutation invariance and decreasing in signal replace-
ment remain necessary conditions for Blackwell monotonicity.

The key step in establishing sufficiency for Blackwell monotonicity in Theorem 1 and 3 is to
construct a decreasing path connecting any f ⪰B g. For E2, we were able to construct such a path
within E2 itself, whereas for E , we relied on split invariance and introduced additional signals to
construct the path.

However, when the number of signals is limited to some m > 2, such a path within the space
Em does not always exist, as shown by the following proposition.

Proposition OA.1. Suppose that n = m = 3 and let

I3 =

1 0 0

0 1 0

0 0 1

 ⪰B g =

4/5 1/5 0

0 4/5 1/5

1/5 0 4/5

 ∈ E3.

If f ∈ E3 is Blackwell more informative than g, then f is a permutation of I3 or g.

Proposition OA.1 suggests that there is no continuous path in E3 connecting I3 and g along
which Blackwell informativeness decreases. Because if such a path existed, there would have to
be an experiment, other than permutations of I3 or g, that is more informative than g but less
informative than I3, which is impossible according to the proposition.

We overcome the issue by imposing quasiconvexity on the cost function. Let C ∈ Cm be
defined as quasiconvex if for any f, g ∈ Em and λ ∈ [0, 1],

C(λf + (1− λ)g) ≤ max{C(f), C(g)}.

In other words, a mixture of two experiments cannot be more costly than both of them.27

27To make sense of this property, notice a mixture of two experiments, λf + (1− λ)g, can be replicated by running
experiment f with probability λ, and experiment g with probability 1 − λ, then reporting the realized signal without
indicating which experiment was conducted. Thus, if the cost of λf +(1−λ)g is higher than max{C(f), C(g)}, one
could make an arbitrage from this replication.
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To see how quasiconvexity is able to address the difficulty raised in Proposition OA.1, ob-
serve that g = 4

5
I3 +

1
5
I3P for some permutation matrix P . When C is quasiconvex, C(g) ≤

max{C(I3), C(I3P )} = C(I3). Our next result shows that, under quasiconvexity, permutation
invariance and decreasing in signal invariance serve as necessary and sufficient conditions for
Blackwell monotonicity over Em.

Theorem OA.1. Suppose C ∈ Cm is absolutely continuous and quasiconvex. Then, C is Blackwell

monotone if and only if C is permutation invariant and decreasing in signal replacement.

Proof of Theorem OA.1 Necessity is established in the main text. For sufficiency, we begin by
considering the set of all m × m stochastic matrix, denoted by Mm. Then, for any f, g ∈ Em,
f ⪰B g if and only if there exists M ∈ Mm such that g = fM .

Notice Mm is a convex subset of Rm×m
+ and its extreme points are given by the matrices

with exactly one non-zero entry in each row (see e.g., Cao et al. (2022)). Let ext(Mm) =

{E1, · · · , Emm} denote the set of all extreme points of Mm. Then, since any M ∈ Mm can
be written as a convex combination of elements in ext(Mm), the quasiconvexity of C implies that

C(g) ≤ max{C(fE) : E ∈ ext(Mm)},

Therefore, it suffices to show that C(f) ≥ C(fE) for all E ∈ ext(Mm).
For any k ≤ m, let extk(Mm) denote extreme-point matrices with rank k. Note that extm(Mm)

corresponds to the set of all permutation matrices. Thus, permutation invariance implies that
C(f) = C(fE) for all E ∈ extm(Mm). The following lemma shows that decreasing in signal
replacement implies that for any 1 ≤ k ≤ m and E ∈ extk−1(Mm), there exists E ′ ∈ extk(Mm)

such that fE ′ is at least as costly as fE. By repeatedly applying this, we can see that for any
E ∈ ext(Mm), there exists Ẽ ∈ extm(Mm) such that C(fE) ≤ C(fẼ) = C(f), which com-
pletes the proof.

Lemma OA.3.1. Suppose C ∈ Cm is absolutely continuous and decreasing in signal replacement.

Then for any 1 ≤ k ≤ m and E ∈ extk−1(Mm), there exists E ′ ∈ extk(Mm) such that for all

λ ∈ [0, 1],

fE ′ ⪰B (1− λ)fE ′ + λfE ⪰B fE. (OA.3.1)

And it further implies C(fE ′) ≥ C(fE).

Proof of Lemma OA.3.1. Since E is not a full rank matrix, there exists a column ei such that at
least two entries are equal to 1. Let eij = eij′ = 1. Additionally, there are n − k + 1 columns
such that all the entries are equal to zero. Let one of such columns be ei′ . Let E ′ be a matrix such

4



that e′i
′

j′ = 1, e′ij′ = 0 and all other entries are same as E. Note that E ′ has exactly n − k empty
columns, i.e., E ′ ∈ extk(Mm).

Let B denote a matrix an m ×m matrix such that bi′i′ = −1, bii′ = 1, and all other entries are
equal to zero. Observe that when l ̸= i, i′, l-th column of fBi′

i is equal to 0. Additionally, i-th
column of fBi′

i is −f i and i′-th column of fBi′
i is f i. Thus, fBi′

i is equal to f i→i′ .
Note that when Im is the identity matrix of size m, Im + λB is a stochastic matrix for any λ ∈

[0, 1]. Observe that B2 = −B and (Im+λB) · (Im+B) = Im+B. Additionally, E ′(Im+B) = E

and E ′(Im + λB) = (1− λ)E ′ + λE. Therefore, we have

(1− λ)fE ′ + λfE = fE ′(Im + λB),

fE = fE ′(Im +B) = fE ′(Im + λB) · (Im +B).

Since Im + λB and Im +B are stochastic matrices, (OA.3.1) holds.
Next, from fB = f i′→i and decreasing in signal replacement, we have that for all λ ∈ [0, 1],

D+(C((1− λ)fE ′ + λfE), fE − ((1− λ)fE ′ + λfE))

=D+(C((1− λ)fE ′ + λfE), ((1− λ)fE ′ + λfE)B) ≤ 0. (OA.3.2)

Finally, we show for such E and E ′,

C(fE ′) ≥ C(fE).

For λ ∈ [0, 1], define the function φ(λ) = C((1 − λ)fE ′ + λfE). By absolute continuity, φ is
differentiable almost everywhere on [0, 1] and satisfy

φ′(λ) = D+C((1− λ)fE ′ + λfE; fE − fE ′).

Then, the FTC implies that

C(fE)− C(fE ′) = φ(1)− φ(0) =

∫ 1

0

φ′(λ)dλ =

∫ 1

0

D+((1− λ)fE ′ + λfE; fE − fE ′)dλ

=

∫ 1

0

1

1− λ
D+(C((1− λ)fE ′ + λfE), fE − ((1− λ)fE ′ + λfE))dλ ≤ 0,

where the second last equality uses positive homogeneity of D+C(f ; ·) and the last inequality
follows from that (OA.3.2) holds for all λ ∈ [0, 1].
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OA.3.2 Remarks

Remark 1. Theorem OA.1 characterizes necessary and sufficient conditions for Blackwell mono-
tonicity under the presence of quasiconvexity. This raises the question of whether quasiconvexity
is necessary for Blackwell monotonicity. The following example illustrates a cost function over
binary experiments that is Blackwell monotone but not quasiconvex.

Example OA.3. Suppose n = m = 2. Denote any experiment f ∈ E2 by f = [f1, f2]
⊺. As before,

we restrict attention to the set Ê2 = {(f1, f2) : 0 ≤ f1 ≤ f2 ≤ 1}. Consider C : Ê2 → R+ defined
by

C(f) = min

{
f2
f1
,
1− f1
1− f2

}
.

By using (OA.1.1), we can easily see that f ⪰B g implies C(f) ≥ C(g), i.e., C is Blackwell
monotone.

Consider f = [0, 1/2]⊺ and g = [1/2, 1]⊺ with costs C(f) = C(g) = 2. For the one-half
mixture of them, given by h = [1/4, 3/4]⊺, the cost is C(h) = 3 > C(f) = C(g). Hence, this cost
function is not quasiconvex.

Remark 2. Quasiconvexity is not needed in establishing Blackwell monotonicity over binary exper-
iments. However, when quasiconvexity is imposed in this case, it is almost sufficient for Blackwell
monotonicity.

Recall that any binary experiment can be represented by f = [f1, · · · , fn]⊺ ∈ [0, 1]n, and
0 and 1 are completely uninformative experiments. Let C be non-null if for any f ∈ [0, 1]n,
C(f) ≥ C(1) = C(0).

Proposition OA.2. If C ∈ E2 is quasiconvex, permutation invariant, and non-null, then C is

Blackwell monotone.

Remark 3. We provide a weaker version of quasiconvexity, which can also serve as a necessary
condition for Blackwell monotonicity.

Definition OA.1. C ∈ Cm is garbling-quasiconvex if for all f ∈ E , any finite collection of its

garblings, {g1, · · · , gn}, and λ0, · · · , λn ∈ [0, 1] with
∑n

i=0 λi = 1,

C

(
λ0f +

n∑
i=1

λigi

)
≤ max{C(f), C(g1), · · · , C(gn)}.

Proposition OA.3. Suppose C ∈ Cm is absolutely continuous. Then, C is Blackwell monotone if

and only ifC is permutation invatiant, garbling-quasiconvex and decreasing in signal replacement.
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The necessity of garbling-quasiconvexity follows from the fact that f ⪰B λ0f +
∑

i λigi for
all such configurations. For sufficiency, the proof proceeds almost identically to that of Theorem
OA.1, with additional steps required to show that garbling-quasiconvexity, together with continuity,
is sufficient to establish the final step.

OA.3.3 Proofs

OA.3.3.1 Proof of Proposition OA.2

Proof of Proposition OA.2. By Lemma 1, f ⪰B g if and only if g = af + b(1 − f) for (a, b) ∈
[0, 1]2. If a ≥ b, g = (1−a)·0+(a−b)·f+b·1; and if a < b, g = (1−b)·0+(b−a)·(1−f)+a·1.
From quasiconvexity and non-nullness, we have C(f) ≥ C(g) or C(1 − f) ≥ C(g). Then, by
permutation invariance, C(f) = C(1− f), thus, C(f) ≥ C(g).

OA.3.3.2 Proof of Theorem OA.3

Proof of Theorem OA.3. The necessity is already addressed in the main text.
For sufficiency, take any f ⪰B g. By the same argument as in the proof of Theorem OA.1,

all extreme points of SB(f) are in SC(f). By convexity of SB(f), g can be written as a convex
combination of these extreme points, denoted by g =

∑n
i=1 λigi. Moreover, for all ϵ > 0, gϵ ≡

ϵf + (1− ϵ)g ∈ SB(f). By garbling-quasiconvexity,

C(gϵ) ≤ max{C(f), C(g1), · · · , C(gn)} ≤ C(f),

for all ϵ > 0, where the last inequality follows because gi’s are extreme points of SB(f). Taking
the limit as ϵ→ 0, by continuity, we have C(f) ≥ C(g), and thus C is Blackwell monotone.

OA.4 Omitted Proofs

OA.4.1 Proof of Proposition 2 (i)

Proof of Necessity for Proposition 2 (i). Suppose C is likelihood separable. First, given any f̂ ∈
[0, 1]n. For any k ∈ N, consider the following experiments,

f =
[
f̂ 0 · · · 0 1− f̂

]
∈ Ek+1,
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and
g =

[
1
k
f̂ · · · 1

k
f̂ 1− f̂

]
∈ Ek+1.

Observe that

f


1/k · · · 1/k 0

... . . . ... 0

1/k · · · 1/k 0

0 · · · 0 1

 = g and g


1 0 · · · 0 0
...

... . . . ... 0

1 0 · · · 0 0

0 0 · · · 0 1

 = f,

that is, f ⪰B g ⪰B f . Thus, Blackwell monotonicity implies that C(f) = C(g). Then it holds
that ψ

(
1
k
f̂
)
= 1

k
ψ(f̂).

Next, for any ℓ ∈ N such that ℓf̂ ∈ [0, 1]n. Consider the following experiments,

f =
[
ℓf̂ 1− ℓf̂

]
∈ E2,

and
g =

[
f̂ · · · f̂ 1− ℓf̂

]
∈ Eℓ+1.

By the same argument, Blackwell monotonicity implies that C(f) = C(g), thus, ψ(ℓf̂) = ℓψ(f̂).

Together it implies that, for all f̂ ∈ [0, 1]n, for all z ∈ Q such that zf̂ ∈ [0, 1]n, ψ(f̂) = zψ(f̂). By
the density of Q in R and the continuity of ψ(·), we have positive homogeneity of ψ over [0, 1]n.

Next, we show subadditivity, i.e., for any f̂ , ĝ ∈ [0, 1]n such that f̂ + ĝ ∈ [0, 1]n, then

ψ(f̂ + ĝ) ≤ ψ(f̂) + ψ(ĝ).

Consider the following experiments,

f =
[
f̂ ĝ 1− f̂ − ĝ

]
∈ E3,

and
g =

[
f̂ + ĝ 1− f̂ − ĝ

]
∈ E2.

As g is obtained by merging the first two signals in f , we have f ⪰B g. Thus, Blackwell mono-
tonicity implies that C(f) ≥ C(g), and thus sublinearity of ψ holds.
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