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Introduction



Introduction

� Agenda: integration of costly information across various fields

� Question: Which information cost function should or could be used

� Examples

� Entropy Costs: Sims (2003); Matějka, McKay (2015)

� Posterior Separable Costs: Caplin, Dean, Leahy (2022); Denti (2022)

� Log-Likelihood Ratio Costs: Pomatto, Strack, Tamuz (2023)

� Common Principle: Blackwell Monotonicity

� More informative in Blackwell’s order ⇒ higher cost

� Minimum requirement for plausible information costs

� However, conditions for Blackwell monotonicity remain underexplored
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Illustration: Blackwell Monotonicity

� Consider consumers seeking to acquire information about their COVID-19 status

� Two tests are available in the competitive market:

signal

state

n p

−

+

80%

20%

20%

80%

Test A ($10)

signal

state

n p

−

+

60%

15%

40%

85%

Test B ($12)

� A producer can make an arbitrage by replicating test B using test A
� When n is realized, toss a coin twice and replace it with p if both are heads
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Illustration: Blackwell Monotonicity

� Blackwell’s Theorem

� A is more informative than B ⇔ B is a garbling of A

� Blackwell Monotonicity

� A should be more costly than B whenever A is Blackwell more informative than B

� Goals

� identify elementary necessary and sufficient conditions for Blackwell monotonicity

� characterize a practical and tractable class of information cost functions

Literature
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Preliminaries



Experiments

� Ω = {ω1, · · · , ωn}: a finite set of states

� S = {s1, · · · , sm}: a finite set of signals

� A statistical experiment f : Ω → ∆(S) can be represented by an n ×m matrix:

f =

f
1
1 · · · f m1
...

. . .
...

f 1n · · · f mn

 ,
where f ji = Pr(sj |ωi ), thus, f

j
i ≥ 0 and

∑m
j=1 f

j
i = 1

� Em ⊂ Rn×m: the space of all experiments with m possible signals

4/20



Blackwell Informativeness

� f ⪰B g : f is Blackwell more informative than g

iff g is a garbling of f : ∃ a stochastic matrix M s.t. g = f M

� Examples of garbling under binary signal

1. Signal Replacement: for some ϵ > 0,

M =

[
1− ϵ ϵ

0 1

]
meaning that s1 is replaced with s2 with probability ϵ

2. Permutation:

P =

[
0 1

1 0

]
meaning that signals are relabeled

� f ≃B f P: relabeling signals does not change the informativeness
5/20
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Information Costs and Blackwell Monotonicity

� Information Costs

� C : Em → R+ : an information cost function

� Cm: the set of all absolutely continuous information cost functions defined over Em
� Absolute continuity ensures that a derivative exists a.e. and is integrable

� In the talk, assume that C is differentiable and the gradient exists

� Blackwell Monotonicity

� An information cost function C ∈ Cm is Blackwell monotone

if for all f , g ∈ Em, C (f ) ≥ C (g) whenever f ⪰B g .

� Permutation Invariance

� Any Blackwell-monotone information cost function is permutation invariant, i.e.,

C (f ) = C (f P) for any permutation matrix P
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Binary Experiments

� Focus on the case where n = m = 2

� Any experiment can be represented by

f ≡ (fL, fH)
⊺ ∈ [0, 1]2:

[1− f , f ] =

sL sH

ωL 1− fL fL

ωH 1− fH fH

� 1− f is a permutation of f

� When fL = fH , it is completely

uninformative
fL

fH

f

1

1
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Blackwell Informativeness under Binary Experiments

fL

fH

f

1

1

� Recall that f ⪰B g iff

[1− g , g ] = [1− f , f ] M

for some stochastic matrix M

� Extreme points of M:

M1 =

[
1 0

0 1

]
M2 =

[
0 1

1 0

]

M3 =

[
1 0

1 0

]
M4 =

[
0 1

0 1

]
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Blackwell Informativeness under Binary Experiments

fL

fH

f

A

1− f

C

B

D

g

1

1

f ⪰B g

fL

fH

f

A

1− f

C

B

D
g

1

1

f ̸ ⪰Bg

9/20



Necessary Conditions for Blackwell Monotonicity

When an information cost C is Blackwell monotone,

fL

fH

f

A

1− f

B

D

1

1

1. ⟨∇C (f ),−f ⟩ ≤ 0

sL

sH

s ′L

s ′H1− ϵ

ϵ

1

2. ⟨∇C (f ), 1− f ⟩ ≤ 0

sL

sH

s ′L

s ′H1

ϵ

1− ϵ
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Theorem for Binary Experiments

Theorem 1

C ∈ C2 is Blackwell monotone if and only if it is

1. permutation invariant;

2. for all f ∈ E2,
⟨∇C (f ), f ⟩ ≥ 0 ≥ ⟨∇C (f ), 1− f ⟩. (1)

� This theorem holds for the cases with more than two states,

but the binary signal assumption is crucial.

Quiz
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Proof for Sufficiency

For any f ⪰B g , we can find a path from f to g (or the permutation of it)

along which Blackwell informativeness decreases

fL

fH

f

A

g

C

B

D

1

1

12/20



Finite Experiments: more than two

signals



Necessary Conditions for Blackwell Monotonicity

Now assume that there are more than two signals.

� Permutation invariance is still necessary

� For any pair (i , j), the following garbling worsens the informativeness:

si

sj

s ′i

s ′j
1

ϵ

1− ϵ

� This gives us ⟨∇jC (f )−∇iC (f ), f i ⟩ ≤ 0, where

⟨∇jC (f )−∇iC (f ), f i ⟩ =
n∑

s=1

∂C

∂f js
· f is −

n∑
s=1

∂C

∂f is
· f is
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Sufficient Conditions for Blackwell Monotonicity

� For binary experiments, sufficiency was established by finding a path between two

experiments along which informativeness decreases

� However, when m ≥ 3, there may not exist such path Illustrations

� To overcome this issue, we impose quasiconvexity on C :

C (λf + (1− λ)g) ≤ max{C (f ), C (g)}.

With quasiconvexity, the first-order condition serves as a sufficient condition for

Blackwell monotonicity

� Remarks
� Quasiconvexity is not a necessary condition for Blackwell Monotonicity Details

� We found a weaker (but less standard) version of Quasiconvexity serving as a

necessary condition for Blackwell monotonicity Details 14/20
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Theorem for Finite Experiments

Theorem 2

Suppose that C ∈ Cm is absolutely continuous and quasiconvex. Then, C is Blackwell

monotone if and only if it is

1. permutation invariant;

2. for all f ∈ Em and i ̸= j ,

⟨∇jC (f )−∇iC (f ), f ⟩ ≤ 0. (2)

� SB(f ): the set of experiments that are less Blackwell informative than f

� Two conditions ensure that extreme points of SB(f ) are not more costly than f

� Then, we can apply quasiconvexity

15/20
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Likelihood Separable Costs



Likelihood Separable Costs

Likelihood Separable Costs

C is likelihood separable if there exist a constant a and an absolutely continuous

function ψ : Rn
+ → R+ such that, for all m and f ∈ Em,

C (f ) =
m∑
j=1

ψ(f j) + a.

Let CLS be the class of likelihood separable costs

Theorem 3

When C ∈ CLS , C is Blackwell monotone if and only if ψ is sublinear: proof

1. positive homogeneity: ψ(αh) = αψ(h);

2. subadditivity: ψ(k) + ψ(l) ≥ ψ(k + l)
16/20
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GSLS Costs

Groundedness

C is grounded if it assigns zero cost to uninformative experiments.

Let CG be the class of grounded costs.

GSLS costs

C is called grounded sublinear likelihood separable (GSLS) if there exists a sublinear

and absolutely continuous function ψ such that

C (f ) =
m∑
j=1

ψ(f j)− ψ(1).

Then,

CGSLS = CLS ∩ CG ∩ CBM

17/20
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Examples: GSLS Costs

1. Supnorm Costs

C(f ) =
m∑
j=1

max
i

f ji − 1,

2. Absolute-Linear Costs

C(f ) =
m∑
j=1

|⟨a, f j⟩| − |⟨a, 1⟩| =
m∑
j=1

∣∣∣∣ n∑
i=1

ai f
j
i

∣∣∣∣− ∣∣∣∣ n∑
i=1

ai

∣∣∣∣.
3. Linear ϕ-divergence Costs (including LLR costs of Pomatto, Strack, Tamuz (2023))

C(f ) =
m∑
j=1

∑
i,i′

βii′ f
j
i′ϕii′

(
f ji
f ji′

)
=
∑
i,i′

βii′

m∑
j=1

f ji′ϕii′

(
f ji
f ji′

)
, (3)

where ϕii′ : [0,∞] → R ∪ {+∞} is a convex function with ϕii′(1) = 0 and βii′ ≥ 0

18/20



GSLS Costs and Posterior Separability

Posterior Separability

C has a posterior separable (PS) representation at a prior belief µ ∈ ∆(Ω) if there

exists a concave and absolutely continuous function H : ∆(Ω) → R such that

C (f ) = H(µ)−
m∑
j=1

τµ(f
j) · H(qµ(f

j))

where qµ(f
j) is the posterior belief upon receiving sj and τµ(f

j) is the probability of

receiving sj .

Let CPS
µ denote the class of cost functions that have PS representations at µ.

Proposition

For any full support prior µ ∈ ∆(Ω), CGSLS = CPS
µ .

19/20
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Conclusion

� We identify necessary and sufficient conditions for Blackwell Monotonicity.

� Under likelihood separability, we show that the sublinearity of the component

function is equivalent to Blackwell Monotonicity.

� Applications: we apply our results to extend

1. Costly Persuasion (Gentzkow, Kamenica, 2014) Costly Persuasion

2. Bargaining and Information Acquisition (Chatterjee, Dong, Hoshino, 2024) Bargaining

� Future Research: Lehmann-Monotone Information Costs
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Quiz

Which of the followings (defined over fH > fL) are Blackwell-monotone information

cost functions?

1. C (fL, fH) =
fH(1− fH)

fL(1− fL)
− 1 2. C (fL, fH) =

fH
fL

+
1− fL
1− fH

− 2

3. C (fL, fH) = (fH − fL)
2 4. C (fL, fH) = fH − 2fL
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Further Characterizations with Binary States

fL

fH

f

A

g
A′

C

B

D

1

1

f ⪰B g is equivalent to:

1. AB steeper than A′B:

α ≡ fH
fL

≥ gH
gL

≡ α′

α: the likelihood ratio of receiving sH

2. AD shallower than A′D:

β ≡ 1− fL
1− fH

≥ 1− gL
1− gH

≡ β′

β: the inverse of likelihood ratio of

receiving sL

� C is Blackwell monotone iff it is increasing in α and β after reparametrization

Go Back



Further Characterizations with Binary States

fL

fH

f

A

g
A′

C

B

D

1

1

f ⪰B g is equivalent to:

1. AB steeper than A′B:

α ≡ fH
fL

≥ gH
gL

≡ α′

α: the likelihood ratio of receiving sH

2. AD shallower than A′D:

β ≡ 1− fL
1− fH

≥ 1− gL
1− gH

≡ β′

β: the inverse of likelihood ratio of

receiving sL

� C is Blackwell monotone iff it is increasing in α and β after reparametrization

Go Back



Further Characterizations with Binary States

1. C (fL, fH) =
fH(1− fH)

fL(1− fL)
− 1 with 1 > fH > fL > 0

C̃ (α, β) =
α

β
− 1

� C̃ is increasing in α but not in β, thus, C̃ is not Blackwell monotone.

2. C (fL, fH) =
fH
fL

+
1− fL
1− fH

− 2 with 1 > fH > fL > 0

C̃ (α, β) = α+ β − 2

� C̃ is increasing in both α and β, thus, C̃ is Blackwell monotone.
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Further Characterizations with Binary States

fL

fH

f

A

1− f

C

B

D
Isocost Curve

1

1
⟨∇C (f ), f ⟩ ≥ 0 ≥ ⟨∇C (f ), 1− f ⟩
is equivalent to:

fH
fL︸︷︷︸

the slope
of AB

≥ − ∂C/∂fL
∂C/∂fH︸ ︷︷ ︸

the slope of
the isocost curve

≥ 1− fH
1− fL︸ ︷︷ ︸
the slope
of AD

� Interpretation: a marignal rate of information transformation (MRIT) lies

between the two likelihood ratios provided by the experiment.
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Further Characterizations with Binary States

3. C (fL, fH) = (fH − fL)
2 with 1 > fH > fL > 0

fH
fL

≥ − ∂C/∂fL
∂C/∂fH

= 1 ≥ 1− fH
1− fL

� The above inequalities hold for all 1 > fH > fL > 0, thus, it is Blackwell monotone.

4. C (fL, fH) = fH − 2fL with 1 > fH > fL > 0

fH
fL

≥ − ∂C/∂fL
∂C/∂fH

= 2 ≥ 1− fH
1− fL

� The above inequalities does not always hold, e.g., fL = .5 and fH = .6,

thus, it is not Blackwell monotone.
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Answer for the Quiz

Which of the followings are Blackwell-monotone information cost functions?

1. C (fL, fH) =
fH(1− fH)

fL(1− fL)
− 1 2. C (fL, fH) =

fH
fL

+
1− fL
1− fH

− 2

3. C (fL, fH) = (fH − fL)
2 4. C (fL, fH) = fH − 2fL
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Sufficient Conditions for Blackwell Monotonicity

When m ≥ 3, there may not exist a path along which informativeness decreases

Proposition

Let

g =

4/5 1/5 0

0 4/5 1/5

1/5 0 4/5

 ∈ E3.

If f ⪰B g and f ∈ E3, then f is a permutation of I3 or g .

� I3 is Blackwell more informative than g , but we cannot find a path from I3 to g

along which Blackwell informativeness decreases

Go Back
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� When n = m = 3, f ⪰B g iff the triangle generated by f 1, f 2, f 3 includes the one

generated by g1, g2, g3

(0, 1, 0)⊺

(1, 0, 0)⊺

(0, 0, 1)⊺
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� When n = m = 3, f ⪰B g iff the triangle generated by f 1, f 2, f 3 includes the one

generated by g1, g2, g3

(0, 1, 0)⊺

(1, 0, 0)⊺

(0, 0, 1)⊺

(0, 1/5, 4/5)⊺

(4/5, 0, 1/5)⊺

(1/5, 4/5, 0)⊺
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Quasiconvexity

� Observe that there is a permutation of I3 such that

g =
4

5
· I3 +

1

5
· (I3 · P).

� If we impose quasiconvexity, with permutation invariance, we have

C (I3) = C (I3 · P) ≥ C

(
4

5
· I3 +

1

5
· I3 · P

)
= C (g).
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Quasiconvexity

� The following information cost function for binary experiments is not quasiconvex

f1

f2

1

1

C (f1, f2) =min

{
f2
f1
,
1− f1
1− f2

}
=min{α, β}
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Garbling Quasiconvexity

Garbling Quasiconvexity

C ∈ Cm is garbling-quasiconvex if for all f ∈ Em, any finite collection of its garblings,

{g1, · · · , gn}, and λ0, · · · , λn ∈ [0, 1] with
∑n

i=0 λi = 1,

C
(
λ0f +

n∑
i=1

λigi
)
≤ max {C (f ),C (g1), · · · ,C (gn)}

Theorem 4

C ∈ Cm is Blackwell monotone if and only if (i) C is permutation invariant; (ii) C is

garbling-quasiconvex; and (iii) for all f ∈ Em, Go Back

⟨∇jC (f )−∇iC (f ), f ⟩ ≤ 0.
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Proof of Theorem 3

[Sublinearity ⇒ Blackwell Monotonicity]

� From sublinearity, we can show that C is convex.

� Consider the garbling of replacing sj to sk with prob. ϵ:

∆C = ψ(f k + ϵ · f j) + ψ((1− ϵ)f j)−
[
ψ(f k) + ψ(f j)

]
= ψ(f k + ϵ · f j) + (1− ϵ) · ψ(f j)− ψ(f k)− ψ(f j)

= ψ(f k + ϵ · f j)− ψ(f k)−

Go Back
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Proof of Theorem 3

[Blackwell Monotonicity ⇒ Sublinearity]

1. Positive homegenity: Note that ψ(0) = 0. For any k ∈ N,

[f̂ , 0, · · · , 0, 1− f̂ ] ∼B [f̂ /k, f̂ /k, · · · , f̂ /k, 1− f̂ ] ⇒ ψ(f̂ ) = k ψ(f̂ /k).

Then, for any (k , l) ∈ N2, we also have

l

k
ψ(f̂ ) = l ψ

(
f̂

k

)
= ψ

(
l

k
f̂

)
By density of Q in R and the continuity of ψ, ψ(α f̂ ) = α ψ(f̂ ) for all α ∈ R+

2. Subadditivity:

[f̂ , ĝ , 1− f̂ − ĝ ] ⪰B [f̂ + ĝ , 0, 1− f̂ − ĝ ] ⇒ ψ(f̂ ) + ψ(ĝ) ≥ ψ(f̂ + ĝ)
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Application I: Costly Persuasion



Gentzkow, Kamenica (2014) Revisited

� Consider a costly persuasion problem with the standard example
� State: {innocent, guilty}
� Receiver’s action: Acquit or Convict

� Sender’s payoff: uS(C ) = 1, uS(A) = 0

� Receiver’s payoff: uR(A, innocent) = uR(C , guilty) = 1

uR(C , innocent) = uR(A, guilty) = 0

� Sender commits to an experiment at some cost

� GK focuses on posterior separable costs (e.g., entropy cost) to utilize

concavification technique

� Can we solve this problem with any Blackwell-monotone information cost

function?

Go Back
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Costly Persuasion with Blackwell-Monotone Information Cost

� It is without loss to consider binary experiments since R’s action is binary

� f2 = Pr(C |guilty) and f1 = Pr(C |innocent)

� When the prior is p, the sender’s problem is

max
0≤f1≤f2≤1

pf2 + (1− p)f1 − C (f1, f2)

subject to
pf2

pf2 + (1− p)f1
≥ 1

2
.

� When p ≥ 1/2, the solution is f1 = f2 = 1: always convict costlessly Go Back
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Cost Minimization

� Suppose p < 1/2.

� Cost minimization problem under

pf2 + (1− p)f1 = w :

minC (f1, f2) s.t.
pf2 + (1− p)f1 = w ,

pf2 ≥ (1− p)f1

f1

f2 pf2 = (1− p)f1

pf2 + (1− p)f1 = w

1

1

� Proposition: for any Blackwell-monotone information cost function,

the cost is minimized when pf2 = (1− p)f1 Go Back
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Sender’s Problem

� When pf2 + (1− p)f1 = w , the cost is minimized at

f2 =
w

2p
and f1 =

w

2(1− p)
.

� Now the sender’s problem is

max
0≤w≤2p

w − C

(
w

2(1− p)
,
w

2p

)
(4)

� From here on, a specific cost function is needed Go Back
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Costly Persuasion with Non-Posterior-Separable Cost

� When C (f1, f2) = (f2 − f1)
2, the solution for p < 1/2 is

f2(p) = min

{
1,

(1− p)2p

(1− 2p)2

}
and f1(p) =

p

1− p
· f2(p).

Go Back

f

p
p̂ 1/2

1

f2 = Pr(C |g)

f1 = Pr(C |g)

Optimal Experiments

µ

p
p̂ 1/2

1/2
Pr(g |C)

Pr(g |A)

Posteriors



Application II: Bargaining and

Information Acquisition



Chatterjee, Dong, Hoshino (2023)

� Consider a bargaining problem with information acquisition

� Players: Seller and Buyer

� State (B’s valuation): v ∈ {L,H} with H > L > 0

� Prior belief: π ≡ Pr(v = H) ∈ (0, 1)

� Timing of the game

1. Nature draws v and S observes v

2. S offers p

3. B costly acquires information about v and then accepts or rejects

� Chatterjee et al. focus on specific types of information acquisition

� We extend their analysis by allowing B to choose information flexibly

Go Back
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Chatterjee, Dong, Hoshino (2023): H-focused information

B’s cost: λ · c(fH)

Result 1: pooling eq’m

under H-focused signal structure, for any
λ, there exists ϵ > 0 such that every
equilibrium is a pooling equilibrium where

1. both types of S offer p∗ ∈ [L, L+ ϵ);

2. B accepts without information

acquisition.

Moreover, ϵ→ 0 as λ→ 0, thus, B

extracts full surplus as λ→ 0

H-focused Information
sL sH

L 1 0

H 1− fH fH

fL

fH
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Chatterjee, Dong, Hoshino (2023): L-focused information

B’s cost: λ · c(1− fL)

Result 2: almost-separating eq’m

under L-focused signal structure, for any
small enough λ, there exists an equilibrium
such that

1. type H S offers p∗ ≈ H;

2. type L S offers L with prob. 1− ϵ,

p∗ with prob. ϵ;

3. B acquires information and conditions her

purchase decision on the signal realization

Moreover, S’s payoff is close to v and B’s

payoff is close to zero

L-focused Information
sL sH

L 1− fL fL

H 0 1

fL

fH
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Flexible Information Acquisition

� We extend to the full domain and consider λ|f2 − f1| and λ(f2 − f1)
2

Result 1’: when C (f1, f2) = λ|f2 − f1|,
the unique equilibrium is the pooling

equilibrium, and as λ→ 0, B extracts full

surplus

Result 2’: when C (f1, f2) = λ(f2 − f1)
2,

there exists an almost-separating

equilibrium, and S’s payoff is close to v

and B’s payoff is close to zero

Flexible Information
sL sH

L 1− fL fL

H 1− fH fH

fL

fH
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