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Introduction

e Agenda: integration of costly information across various fields
e Question: Which information cost function should or could be used

e Examples
e Entropy Costs: Sims (2003); Matg&jka, McKay (2015)
e Posterior Separable Costs: Caplin, Dean, Leahy (2022); Denti (2022)
e Log-Likelihood Ratio Costs: Pomatto, Strack, Tamuz (2023)

e Common Principle: Blackwell Monotonicity
e More informative in Blackwell's order = higher cost
e Minimum requirement for plausible information costs
e However, conditions for Blackwell monotonicity remain underexplored
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lllustration: Blackwell Monotonicity

e Consider consumers seeking to acquire information about their COVID-19 status

e Two tests are available in the competitive market:
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lllustration: Blackwell Monotonicity

o Blackwell’s Theorem

e A is more informative than B < B is a garbling of A

¢ Blackwell Monotonicity
e A should be more costly than B whenever A is Blackwell more informative than B

e Goals

e identify elementary necessary and sufficient conditions for Blackwell monotonicity
e characterize a practical and tractable class of information cost functions
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Preliminaries



e Q= {wi, - ,wp}: a finite set of states
e S={s1,-+,Sm}: a finite set of signals

e A statistical experiment f : Q — A(S) can be represented by an n x m matrix:

fll i
fnl R A

where fij = Pr(sj|wj), thus, fij >0and >, fij =1

o Em C R™M: the space of all experiments with m possible signals
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Blackwell Informativeness

e f =p g: f is Blackwell more informative than g
iff g is a garbling of f: 3 a stochastic matrix M s.t. g=f M

e Examples of garbling under binary signal

1. Signal Replacement: for some € > 0,

M= ll—e e]
0 1

meaning that sy is replaced with s, with probability €

p_ 0 1
10
meaning that signals are relabeled

e f ~p f P: relabeling signals does not change the informativeness

2. Permutation:
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Information Costs and Blackwell Monotonicity

¢ Information Costs
o C:&,— Ry : aninformation cost function
e C,,: the set of all absolutely continuous information cost functions defined over &,
e Absolute continuity ensures that a derivative exists a.e. and is integrable
e In the talk, assume that C is differentiable and the gradient exists
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Information Costs and Blackwell Monotonicity

¢ Information Costs
o C:&,— Ry : aninformation cost function
e C,,: the set of all absolutely continuous information cost functions defined over &,
e Absolute continuity ensures that a derivative exists a.e. and is integrable
e In the talk, assume that C is differentiable and the gradient exists

¢ Blackwell Monotonicity

e An information cost function C € C,, is Blackwell monotone
if for all f,g € &5, C(f) > C(g) whenever f =g g.

e Permutation Invariance
e Any Blackwell-monotone information cost function is permutation invariant, i.e.,
C(f) = C(f P) for any permutation matrix P
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Binary Experiments

e Focus on the case where n=m =2

e Any experiment can be represented by fii
f=(f, )T €[0,1]% 1 )
‘ SL SH .f ///
A—ffl= w |1-f £
we | 1—1fy 1y
L 1-f

e 1 — f is a permutation of f ¢
e When f; = fy, it is completely a f,

uninformative
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Blackwell Informativeness under Binary Experiments

e Recall that f >pg g iff

fH
| l-g,gl=[-fflM
for some stochastic matrix M
f e
o e Extreme points of M:
My = |10
01

fL
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Blackwell Informativeness under Binary Experiments

e Recall that f =g g iff

fH

, 1 l-g.gl=01-ffIM
for some stochastic matrix M

f

e Extreme points of M:

S
| My — 10 M, — 01
// 0 ]- 1 0
, " :

0 1 M; = 10 M — 0

10 01
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Blackwell Informativeness under Binary Experiments

1

fH

f=gg

1

fH

o 0Q

f FBg
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Necessary Conditions for Blackwell Monotonicity

When an information cost C is Blackwell monotone,

fiy L. (VC(f),—f) <0
1 . 2 SL———s]
A s ‘ sh
f - " 1—¢ 2/
S =g
/ f
B 1t
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Necessary Conditions for Blackwell Monotonicity

When an information cost C is Blackwell monotone,

fu 1. (VC(f),—f) <0

D /
1 - SL———'5
A o . ‘< g
- H 1_ec H

. 2. (VC(f),1—f) <0

s ’ ]. - f 1 = (&
7 = S

€
B 1 f/_ SH f} SI/-I
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Theorem for Binary Experiments

Theorem 1
C € Cy is Blackwell monotone if and only if it is

1. permutation invariant;

2. forall f €&,
(VC(f),f)y >0>(VC(f),1—f1). (1)

e This theorem holds for the cases with more than two states,

but the binary signal assumption is crucial.
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Proof for Sufficiency

For any f =g g, we can find a path from f to g (or the permutation of it)
along which Blackwell informativeness decreases

fH

1

fL
B 1 12/20




Finite Experiments: more than two
signals




Necessary Conditions for Blackwell Monotonicity

Now assume that there are more than two signals.

e Permutation invariance is still necessary

e For any pair (i, /), the following garbling worsens the informativeness:
1—¢

€
/

Sj—>5j
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Necessary Conditions for Blackwell Monotonicity

Now assume that there are more than two signals.

e Permutation invariance is still necessary

e For any pair (i, /), the following garbling worsens the informativeness:
1—¢

€
/

Sj—>5j

e This gives us (V/C(f) — V/C(f), f’) <0, where

, , , 0C . =0C
iC(F) = VIC(F), Fiy =3 2= - .
SEORNCOREES SR A IR
o o 13/20



Sufficient Conditions for Blackwell Monotonicity

e For binary experiments, sufficiency was established by finding a path between two
experiments along which informativeness decreases
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Sufficient Conditions for Blackwell Monotonicity

e For binary experiments, sufficiency was established by finding a path between two
experiments along which informativeness decreases
e However, when m > 3, there may not exist such path
e To overcome this issue, we impose quasiconvexity on C:
C(Af+ (1 - Ng) < max{C(f), C(g)}-
With quasiconvexity, the first-order condition serves as a sufficient condition for
Blackwell monotonicity
o Remarks
e Quasiconvexity is not a necessary condition for Blackwell Monotonicity > Details J

e We found a weaker (but less standard) version of Quasiconvexity serving as a
necessary condition for Blackwell monotonicity [ > Details IRV



Theorem for Finite Experiments

Theorem 2
Suppose that C € Cy, is absolutely continuous and quasiconvex. Then, C is Blackwell
monotone if and only if it is

1. permutation invariant;

2. forall f € £, and [ #

(VIC(f)—V'C(f),f) <O. (2)
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Theorem for Finite Experiments

Theorem 2
Suppose that C € Cy, is absolutely continuous and quasiconvex. Then, C is Blackwell
monotone if and only if it is

1. permutation invariant;

2. forall f € £, and [ #

(VIC(f)—V'C(f),f) <O. (2)

e Sp(f): the set of experiments that are less Blackwell informative than f
e Two conditions ensure that extreme points of Sg(f) are not more costly than f

e Then, we can apply quasiconvexity
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Likelihood Separable Costs

Likelihood Separable Costs
C is likelihood separable if there exist a constant a and an absolutely continuous
function 1 : RT — R, such that, for all m and f € &,

C(F)=> () +a.
j=1

Let CL° be the class of likelihood separable costs
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Likelihood Separable Costs

Likelihood Separable Costs
C is likelihood separable if there exist a constant a and an absolutely continuous
function 1 : RT — R, such that, for all m and f € &,

C(F)=> () +a.
j=1

Let CL° be the class of likelihood separable costs

Theorem 3

When C € Ct3, C is Blackwell monotone if and only if 1) is sublinear:

1. positive homogeneity: ¢ (ah) = atp(h);

2. subadditivity: (k) + ¥ (1) > ¥(k + 1) 16/20



GSLS Costs

Groundedness
C is grounded if it assigns zero cost to uninformative experiments.
Let C¢ be the class of grounded costs.
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GSLS Costs

Groundedness
C is grounded if it assigns zero cost to uninformative experiments.
Let C¢ be the class of grounded costs.

GSLS costs
C is called grounded sublinear likelihood separable (GSLS) if there exists a sublinear
and absolutely continuous function 1) such that

m

C(F) = _w(F) —(1).

j=1

Then,
CGSLS — CLS N CG N CBM
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Examples: GSLS Costs

1. Supnorm Costs

m
= g max f! — 1,
=

2. Absolute-Linear Costs

m

c(f) = _Ia, )| ~I(a, 1>|—-§£:

Jj=1 Jj=1

Za,fj

i=1

3. Linear ¢-divergence Costs (including LLR costs of Pomatto, Strack, Tamuz (2023))

- flen () 8 Zfaﬁu/ () @)

j=1 i, ii’ i/

where ¢ : [0,00] — RU {400} is a convex function with ¢;/(1) =0 and 87 >0

18/20



GSLS Costs and Posterior Separability

Posterior Separability
C has a posterior separable (PS) representation at a prior belief © € A(Q) if there
exists a concave and absolutely continuous function H : A(2) — R such that

C(f) = H(p) — Zm (F) - H(qu(F))
where q,,(f/) is the posterior belief upon receiving s; and 7,(f/) is the probability of

receiving s;.

Let Cis denote the class of cost functions that have PS representations at .
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GSLS Costs and Posterior Separability

Posterior Separability

C has a posterior separable (PS) representation at a prior belief © € A(Q) if there
exists a concave and absolutely continuous function H : A(2) — R such that

C(F) = H(p) — Zm (F) - H(qu(F))

where q,,(f/) is the posterior belief upon receiving s; and 7,(f/) is the probability of
receiving s;.

Let Cis denote the class of cost functions that have PS representations at .

Proposition

For any full support prior p € A(Q), C%H° = Cﬁs.
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Conclusion

e We identify necessary and sufficient conditions for Blackwell Monotonicity.

e Under likelihood separability, we show that the sublinearity of the component
function is equivalent to Blackwell Monotonicity.

e Applications: we apply our results to extend
1. Costly Persuasion (Gentzkow, Kamenica, 2014)
2. Bargaining and Information Acquisition (Chatterjee, Dong, Hoshino, 2024)

e Future Research: Lehmann-Monotone Information Costs

Thank You!
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Which of the followings (defined over fy > f) are Blackwell-monotone information
cost functions?

(1 — fy) fu 1—f
. =" 2. C(f,fy) = = -2
1 C(va fH) fL(]. — fL) 1 ( L, H) fL + 1— fH
3. C(fy, fy) = (fy — 11)? 4. C(fL, fy) = fy — 2,



Further Characterizations with

Binary States

f =g g is equivalent to:
1. AB steeper than A’'B:

fH

H fi '
f'

(07

(07

a: the likelihood ratio of receiving sy

2. AD shallower than A'D:

1-1
1—1fy —

1—g

= &
1—gH

b=

3: the inverse of likelihood ratio of

receiving s;



Further Characterizations with Binary States

f =g g is equivalent to:
fr 1. AB steeper than A’'B:

1 A
a=—=>2E=4/

A P L 8
g, a: the likelihood ratio of receiving sy
7 2. AD shallower than A'D:
i 1-f  1-
L 8L

7 ¢ kP

= &

B 1 B: the inverse of likelihood ratio of
receiving s;

e C is Blackwell monotone iff it is increasing in o and 3 after reparametrization



Further Characterizations with Binary States

fu(l — 1
1. C(fL,fH):leith1>fH>fL>0
52 (6%
Caaﬁzi_l
(a, 5) 5

e Cis increasing in « but not in 3, thus, C is not Blackwell monotone.



Further Characterizations with Binary States

(1 — fy) .
1. C(f,fy) = ———2> — 1 with 1 > f fi 0
(L, H) fL(l—fL) wi >y >0 >
~ «
Cla,8)=—= -1
(o, B) 5
e Cis increasing in « but not in 3, thus, C is not Blackwell monotone.
fi 1—1
2 C(f,fy)=2+-—L—2withl>fy>f >0
fi 1—fy

Cla,B)=a+pB-2
e C is increasing in both a and 3, thus, € is Blackwell monotone.



Further Characterizations with Binary States

is equivalent to:

fu o _9C/Of 1ty

i o 8C/8fH —1-1
the slope the slope of the slope
of AB the isocost curve of AD

fi



Further Characterizations with Binary States

(VC(f),f) 20> (VC(f),1-f)
A is equivalent to:
f L’
fiu o 0C/of | 1-fy
d i o 8C/8fH —1-1
27 ~—~ N— —
¢ 1 - f the sloipe the slope of the S|ﬂe
// C of AB the isocost curve of AD
// f.
B 1t

e Interpretation: a marignal rate of information transformation (MRIT) lies
between the two likelihood ratios provided by the experiment.



Further Characterizations with Binary States

S C(fL, fH) = (fH = fL)2 with 1> fyg > f >0

fiu . _0C/of__ 1—fy
fi — 8C/8fH —1-1

e The above inequalities hold for all 1 > fy > f; > 0, thus, it is Blackwell monotone.



Further Characterizations with Binary States

S C(fL, fH) = (fH = fL)2 with 1> fyg > f >0

fu _0C/of 1ty
fp — 0C/ofy —1-1f

e The above inequalities hold for all 1 > fy > f; > 0, thus, it is Blackwell monotone.
4. C(fy,fy)=fy—2f with1>fy>1f >0

£ _
In _5(:/8sz2 = 1—fy
fi — 8C/8fH —1-1
e The above inequalities does not always hold, e.g., f = .5 and fy = .6,
thus, it is not Blackwell monotone.

[ Go 5aci



Answer for the Quiz

Which of the followings are Blackwell-monotone information cost functions?

(1 — fy) i 1—6
L Clh, )= ——"2 1 2. C(f, fy) = = -2
1 ( Ly H) f[_(]. — fL) ( L, H) f[_ e 1_ fH
3. C(fy, fy) = (fy — 11)? 4. C(fL, fy) = fy — 2,



Sufficient Conditions for Blackwell Monotonicity

When m > 3, there may not exist a path along which informativeness decreases

Proposition
Let
4/5 1/5 0
g=1|0 4/5 1/5| €é&s.
1/5 0 4/5

If f =g g and f € &3, then f is a permutation of /5 or g.



Sufficient Conditions for Blackwell Monotonicity

When m > 3, there may not exist a path along which informativeness decreases

Proposition

Let
4/5 1/5 0
g=|0 4/5 1/5| €&s.
1/5 0 4/5

If f =g g and f € &3, then f is a permutation of /5 or g.

e /3 is Blackwell more informative than g, but we cannot find a path from /5 to g
along which Blackwell informativeness decreases



e When n = m = 3, f =g g iff the triangle generated by !, f2, f3 includes the one
generated by g!, g2, g3

(0,1,0)T

(1,0,0)7

(0,0,1)7



e When n = m = 3, f =g g iff the triangle generated by !, f2, f3 includes the one
generated by g!, g2, g3

(0,1,0)T+

\(1/5,4/5,0)T

(0,1/5,4/5)T
(1,0,0)7

(0,0,1)7 (4/5,5, 1/5)7



Quasiconvexity

e Observe that there is a permutation of /3 such that

4 1
2 4.k P)
g=¢g hbtg (5P



Quasiconvexity

e Observe that there is a permutation of /3 such that

4 1
2 4.k P)
g=¢g hbtg (5P

o If we impose quasiconvexity, with permutation invariance, we have

C(lg):C(l3-P)2C(;l-l3+;-l3-P>:C(g).



Quasiconvexity

e The following information cost function for binary experiments is not quasiconvex
f2
1

. [h1-f
C(fl,fg)—mm{fl, 1—f2}

=min{a, 5}

f



Garbling Quasiconvexity

Garbling Quasiconvexity

C € Cp, is garbling-quasiconvex if for all f € &, any finite collection of its garblings,
{g1,---,gn}, and Ao, -+, Ap € [0,1] with Y7 jAi =1,

C(of +)_Nigi) < max{C(f), C(g1), -~ , C(gn)}
i=1



Garbling Quasiconvexity

Garbling Quasiconvexity
C € Cp, is garbling-quasiconvex if for all f € &, any finite collection of its garblings,

{g1,"-+ ,&n}, and Xo, -+ , Ay € [0,1] with S0 N\ =1,

C(of +)_Nigi) < max{C(f), C(g1), -~ , C(gn)}
i=1

Theorem 4
C € Cpy, is Blackwell monotone if and only if (i) C is permutation invariant; (ii) C is

garbling-quasiconvex; and (iii) for all f € &,

(VIC(f)—V'iC(f),f) <O.



Proof of Theorem 3

[Sublinearity = Blackwell Monotonicity]

e From sublinearity, we can show that C is convex.

e Consider the garbling of replacing s; to s, with prob. e:

AC =p(F + e F)+ (1 — ) — |p(F¥) + v(F)
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Proof of Theorem 3

[Sublinearity = Blackwell Monotonicity]

e From sublinearity, we can show that C is convex.

e Consider the garbling of replacing s; to s, with prob. e:

AC =p(F + e F)+ (1 — ) — |p(F¥) + v(F)
=P(F+e )+ (1 —e€) - () — p(FF) — y(F)
= P(F* + e ) —p(Fk) — e y(F)



Proof of Theorem 3

[Sublinearity = Blackwell Monotonicity]

e From sublinearity, we can show that C is convex.

e Consider the garbling of replacing s; to s, with prob. e:

AC =p(F + e F)+ (1 — ) — |p(F¥) + v(F)
= (K e F)+ (1 —€)-p(F) — yp(F*) — (F)
= (f* + e F) = () —(e- ) <0



Proof of Theorem 3

[Blackwell Monotonicity = Sublinearity]
1. Positive homegenity: Note that ¢/(0) = 0. For any k € N,
[F,0,-,0,1 =l ~p [F/h, F/k, - F/, L= 1] = @(F) = k b(F/k).

Then, for any (k,/) € N2, we also have
I .a f I 4
—p(f) =1 — | = — f
L () w(k) o (4 7)
By density of Q in R and the continuity of v, ¥ (« f) =« w(f) for all « € Ry

2. Subadditivity:
[f.e1-f-2l=p[f+2,01-F-2] = o(f)+p(@)>v(f+2)



Application I: Costly Persuasion




Gentzkow, Kamenica (2014) Revisited

e Consider a costly persuasion problem with the standard example
e State: {innocent, guilty}
e Receiver's action: Acquit or Convict
e Sender's payoff: us(C) =1, us(A)=0
e Receiver's payoff: ug(A, innocent) = ug(C, guilty) =1
ur(C, innocent) = ur(A, guilty) =0
e Sender commits to an experiment at some cost
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Gentzkow, Kamenica (2014) Revisited

e Consider a costly persuasion problem with the standard example
e State: {innocent, guilty}
e Receiver's action: Acquit or Convict
e Sender's payoff: us(C) =1, us(A)=0
e Receiver's payoff: ug(A, innocent) = ug(C, guilty) =1
ur(C, innocent) = ur(A, guilty) =0
e Sender commits to an experiment at some cost

e GK focuses on posterior separable costs (e.g., entropy cost) to utilize
concavification technique

e Can we solve this problem with any Blackwell-monotone information cost
function?



Costly Persuasion with Blackwell-Monotone Information Cost

e |t is without loss to consider binary experiments since R's action is binary
e f, = Pr(C|guilty) and f; = Pr(C|innocent)

e When the prior is p, the sender’s problem is

f+(1—p)f — C(A,
ogff?gagglpz—i‘( p)fi — C(f1, f2)

subject to
pt2

—_ >
ph+ (1 - p)h

1
5
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ogff?gagglpz—i‘( p)fi — C(f1, f2)

subject to
pt2

—_ >
ph+ (1 - p)h
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e When p > 1/2, the solution is f; = f, = 1: always convict costlessly



Cost Minimization

P ph = (1—p)f
1

e Suppose p < 1/2.
e Cost minimization problem under

ph+(1—p)h =w:

f‘ 1 o — \\\ B _
min C(fi,6) s.t. pfa + ( p)fi = w, ph+(1—p)h=w
pfa > (1 = p)f1 5
fi




Cost Minimization

f pr = (1—p)fi
1
e Suppose p < 1/2.
e Cost minimization problem under
ph+(1—p)h =w:
f+(1—p)f = S ph4(1—p)h =
min C(f1,f) s.t. pR+(1-pli=w, ph+(1—p)i=w
ph > (1 = p)f1 ;
f'
o h

e Proposition: for any Blackwell-monotone information cost function,
the cost is minimized when pf, = (1 — p)f



Sender’s Problem

e When pf; + (1 — p)fi = w, the cost is minimized at

w w
2= %p " T oa )

e Now the sender’s problem is

w w
odweop "’ ¢ <2(1 —p)’ 2p> “)



Sender’s Problem

e When pf; + (1 — p)fi = w, the cost is minimized at

w w
2= %p " T oa )

e Now the sender’s problem is

w w
odweop "’ ¢ <2(1 —p)’ 2p> “)

e From here on, a specific cost function is needed



Costly Persuasion with Non-Posterior-Separable Cost

e When C(f1,f) = ( — f1)?, the solution for p < 1/2 is

_ 2
6(p)=:mh1{1,gi_42ﬁ§} and ﬁ(p):AAELE.ﬁ(p)

1/2

Pr(g|C)

Pr(g|A)

po 12 po1)2

Optimal Experiments Posteriors



Application Il: Bargaining and
Information Acquisition




Chatterjee, Dong, Hoshino (2023)

e Consider a bargaining problem with information acquisition
e Players: Seller and Buyer
e State (B's valuation): v € {L,H} with H > L >0
e Prior belief: 7 =Pr(v = H) € (0,1)
e Timing of the game

1. Nature draws v and S observes v
2. S offers p
3. B costly acquires information about v and then accepts or rejects



Chatterjee, Dong, Hoshino (2023)

e Consider a bargaining problem with information acquisition
e Players: Seller and Buyer
e State (B's valuation): v € {L,H} with H > L >0
e Prior belief: 7 =Pr(v = H) € (0,1)
e Timing of the game

1. Nature draws v and S observes v
2. S offers p
3. B costly acquires information about v and then accepts or rejects

e Chatterjee et al. focus on specific types of information acquisition

e We extend their analysis by allowing B to choose information flexibly



Chatterjee, Dong, Hoshino (2023): H-focused information

B's cost: - c(fi) H-focused Information

S| SH
L 1 0

Result 1: pooling eq’'m
H|1-1fy fy

under H-focused signal structure, for any fy
A, there exists € > 0 such that every
equilibrium is a pooling equilibrium where
1. both types of S offer p* € [L, L + ¢);
2. B accepts without information
acquisition.
Moreover, € — 0 as A — 0, thus, B
extracts full surplus as A — 0 f




Chatterjee, Dong, Hoshino (2023): L-focused information

B sicostiie (Til) L-focused Information

. Y ‘ SL SH
Result 2: almost-separating eq'm Ll1-f ¢
under L-focused signal structure, for any H 0 1
small enough ), there exists an equilibrium f,
such that
1. type H S offers p* ~ H;
2. type L S offers L with prob. 1 — e,
p* with prob. ¢;
3. B acquires information and conditions her
purchase decision on the signal realization
Moreover, S's payoff is close to v and B's f

payoff is close to zero



Flexible Information Acquisition

e We extend to the full domain and consider A|f; — fi| and A(f, — f)?

Flexible Information

SL SH
Result 1': when C(f, %) = \|fh — fi], Ll 1-f 7
the unique equilibrium is the pooling bl fL fL
—TtH TH

equilibrium, and as A — 0, B extracts full P
surplus H

Result 2’: when C(f1, ) = Af — f)?,
there exists an almost-separating
equilibrium, and S’s payoff is close to v
and B'’s payoff is close to zero

fi
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