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Abstract

We study a principal-agent problem where the principal dynamically chooses be-

tween two methods for solving a problem: a direct execution route and a multi-stage

training route with an observable milestone. To mitigate moral hazard, the principal

commits to an endogenously determined deadline. The optimal contract is shaped by

the interplay of three forces: the milestone e�ect from the training route's monitor-

ing advantage, the deadline e�ect that favors the simpler execution route as time runs

short, and the relative e�ciency of each path.
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1 Introduction

In managing complex projects, a central challenge is choosing the best methodology. A

manager must often decide between pursuing a direct, single-stage approach using existing

capabilities and adopting a more complex, multi-stage strategy that �rst requires developing

a specialized skill. This tradeo� recurs in many settings. A software company might rely on

its existing codebase to build a product, or it could �rst train its team on a new programming

language tailored to the project's requirements. Similarly, a graduate student writing a

dissertation might draw only on the training from their �rst- and second-year courses, or they

might �rst build new competencies through additional coursework outside their department.

Perhaps most consequentially, this tradeo� was at the heart of the race to develop

COVID-19 vaccines. Some ventures�Oxford-AstraZeneca, Johnson & Johnson, and No-

vavax�pursued established approaches such as viral-vector and protein-subunit methods.

By contrast, P�zer-BioNTech and Moderna-NIAID took the novel route of developing an

mRNA platform, a strategy that required mastering the new technology before an actual

vaccine could be produced.

To study this type of trade-o�, we develop a model where a principal hires an agent

to solve a problem. At any moment, the principal instructs the agent to pursue one of

two methodologies. She can recommend the execution route, a direct path where the

agent applies a basic skill to solve the problem, with success modeled as a Poisson arrival.

Alternatively, she can recommend the training route, an indirect, two-stage path. On this

route, the agent must �rst acquire an advanced skill before using it to solve the problem;

both the initial skill acquisition and the �nal solution are also governed by Poisson processes.

A crucial feature of the training route is that the acquisition of the advanced skill is

a publicly observable milestone, providing a clear signal of progress. This assumption is

grounded in practice, where such preparatory stages often conclude with veri�able outcomes,

such as obtaining a professional certi�cation, completing a required training program, or a

successful prototype demonstration.
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The choice of methodology is complicated by a classic moral hazard problem. The solution

or skill acquisition only occurs if the agent exerts e�ort, which is his private information.

If the agent shirks, he enjoys a private bene�t, and the principal's ability to counteract

this is limited by the agent's limited liability, which restricts her to o�ering non-negative

rewards. These frictions make deadlines essential for providing incentives; without one, the

agent could shirk inde�nitely. Therefore, the principal must impose a deadline, which is

endogenously determined as part of the optimal contract.

The principal's optimal strategy is governed by the interplay of three competing economic

forces. The �rst is themilestone e�ect, where the observable progress in the training route

provides a monitoring advantage that allows for deadline extensions. This is weighed against

the deadline e�ect, which makes the single-stage execution route more appealing as time

runs short, since a single breakthrough is more probable than the two breakthroughs required

for the training route. The �nal force is e�ciency, de�ned by the expected time required

to solve the problem. To isolate the core tensions, we �rst analyze a benchmark where

both routes are equally e�cient (i.e., have the same expected completion time) and later

introduce the possibility that the execution route is more e�cient (i.e., has a shorter expected

completion time), creating a further trade-o� against the training route's monitoring bene�ts.

Focusing on the case where the execution and training routes are equally e�cient, we

�nd that the optimal contract depends critically on the project return�the gross value of

the solution relative to the operating cost (Theorem 2). When the project return is low,

the optimal deadline is short, and the principal opts exclusively for the execution path.

Conversely, when the project return is high, the bene�t of monitoring the agent's progress

becomes crucial, causing the milestone e�ect to dominate the deadline e�ect; thus, the

principal always recommends the training route. For projects with intermediate returns,

the optimal contract involves a switch in strategy: the principal initially recommends the

training path but instructs the agent to switch to the execution path if the advanced skill is

not acquired and the deadline becomes imminent.
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We then introduce an e�ciency loss from training, re�ecting scenarios where its multi-

stage nature may be slower than the more direct execution route. When this e�ciency loss is

small, our previous characterization remains robust; the optimal contract is still determined

by low, intermediate, or high values of the project return (Proposition 2). However, when

the e�ciency loss is large, the trade-o�s become sharper. The execution route's e�ciency

advantage makes it the preferred choice not only near the deadline but also at the beginning of

a long project. Consequently, for most project returns, an execution-only contract is optimal.

More interestingly, for very high-return projects, a novel two-switch contract emerges where

all three economic forces shape the outcome: the principal begins with the execution route

(due to e�ciency), switches to the training route in the middle of the contract to leverage

the milestone e�ect for monitoring, and �nally reverts to the execution route as the deadline

looms (Proposition 3).

Our �ndings align with observed di�erences in the structure of applied and basic scienti�c

research. Applied research, such as developing a new drug or conducting clinical trials, is

typically structured in stages with clear milestones. This corresponds to the training route in

our model, which we �nd is optimal for high-return projects�a �tting description for applied

research where the potential payo� is large relative to the operating cost. In contrast, basic

research is often pursued �without thought of practical ends� (Bush, 1945), and thus has

a lower immediate project return.1 This prediction is consistent with funding mechanisms

like the National Institutes of Health's R01 grant, which supports �a discrete, speci�ed,

circumscribed project� rather than a staged one.2

Related Literature There is a growing literature on contracting for multi-stage projects,

e.g., Hu (2014); Green and Taylor (2016a); Wolf (2018); Moroni (2022). The most closely

1Bush argues that although broad and basic studies seem to be less important than applied ones, they
are essential to combat diseases because progress in the treatment �will be made as the result of fundamental
discoveries in subjects unrelated to those diseases, and perhaps entirely unexpected by the investigator."
However, since this article does not consider externalities, we abstract from this possibility and focus on the
principal's return from the completed project.

2https://grants.nih.gov/grants/funding/r01.htm
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related study is Green and Taylor (2016a), who study a model in which multiple break-

throughs are needed to complete a project and in which an agent must be incentivized to

exert unobservable e�ort. The training route considered here comprises the baseline model

with the tangible breakthrough in the working paper version of their paper (Green and Tay-

lor, 2016b). However, the option to complete the project directly, which is not considered in

their setup, allows the principal to face a choice problem between the two routes. Moreover,

this choice problem arises at every point in time. Therefore, the principal's problem is more

complex from a dynamic perspective.

A related article is Carnehl and Schneider (2023), where they explore a two-armed ban-

dit problem with one arm requiring a single breakthrough and the other needing multiple

breakthroughs. The agent knows the arrival rates for the latter but must infer the feasibility

of the former through experimentation�a key di�erence between their paper and this one.

Unlike their focus on a single-agent decision problem with an exogenous deadline, this paper

addresses principal-agent contracting with an endogenously determined deadline. Despite

these di�erences, we share a common insight in that the chosen approaches may switch up

to two times.

This investigation is also related to the literature on monitoring in dynamic contracts,

e.g., Orlov (2022); Piskorski andWester�eld (2016); Dilm�e and Garrett (2019); Marinovic and

Szydlowski (2022); Varas et al. (2020); Marinovic and Szydlowski (2023); Chen et al. (2020);

Wong (2023). In most of these papers, a monitoring process provides some information on

the agent's current or past action. In this sense, the completion of the �rst breakthrough

(advanced skill acquisition) in the training route can be considered as a monitoring device

since it lets the principal know that the agent has worked. However, the skill acquisition

gives more information than merely the agent's past actions. Before the skill acquisition, the

success requires one relatively hard breakthrough or two easier breakthroughs. After skill

acquisition, it requires only one relatively easy breakthrough. Thus, the skill acquisition is

distinguished from standard monitoring processes since it also provides information about
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the subsequent likelihood of success.

This work is also relevant to the literature studying complementary innovations, e.g.,

Green and Scotchmer (1995); Gilbert and Katz (2011); Bryan and Lemus (2017); Poggi

(2021). Two subprojects in the sequential approach can be considered as `perfect' comple-

ments in the sense that completing one task in the training route does not create any value

but completing both of them does. The most relevant paper in this line is Kim and Poggi

(2025), which introduces an innovation race model with two R&D routes: one requiring a

single breakthrough (direct development) and the other requiring two breakthroughs (re-

search and development). However, to our knowledge, most studies in this literature focus

on the problems involving competing �rms or a single decision maker, whereas this article

addresses an agency problem.

2 Model

A principal (she) hires an agent (he) to complete a project, speci�cally, to solve a problem.

Problem-solving takes place in continuous time and can be performed in general over an

in�nite horizon: t ∈ [0,∞). When the problem is solved, the principal realizes a gross payo�

Π > 0, and the game ends. The principal incurs an operating �ow cost of c > 0 per unit

of time until the problem is solved or the project is terminated. The principal is assumed

to have an in�nite amount of resources to fund the project, while the agent is protected by

limited liability; that is, the principal can only transfer nonnegative rewards to the agent.3

The principal and the agent are both risk-neutral and patient, i.e., they do not discount the

future. Both players have outside options of zero.

At each point in time, the principal directs an agent to exert e�ort on one of two problem-

solving methodologies, the execution route or the training route. The agent's hidden action

is denoted by βt ∈ {0, 1}, where βt = 1 represents e�ort and βt = 0 represents shirking. If

3See Remark 1 for further discussion of limited liability.
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Figure 1: Problem-Solving Routes

the agent shirks, he receives a private �ow bene�t φ. We assume c > φ > 0, i.e., the private

bene�t from shirking does not exceed the principal's operating cost.

The execution route is a direct path where the agent applies an existing basic skill to

solve the problem. When this route is taken at time t, the problem is solved at a Poisson

rate of λBβt. The training route is a two-stage path where the agent must �rst acquire an

advanced skill before using it to solve the problem. The acquisition of this skill is a publicly

observable milestone. Under this route, both the initial skill acquisition and the subsequent

problem-solving solution arrive at the same Poisson rate of λAβt. These paths are illustrated

in Figure 1.4

3 Benchmarks

Before deriving the optimal contract under asymmetric information, we explore two bench-

mark scenarios under which a social planner (it) chooses the best route for solving the

problem without relying on an agent. We begin with the unconstrained �rst-best setting

and then explore the presence of exogenous deadlines.

4The subscripts A and B stand for advanced and basic skills, respectively.
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3.1 The First-best and Parametric Assumptions

Suppose the social planner is able to solve the problem on its own. If the planner employs

the execution route, the expected amount of time until the problem is solved is 1/λB. So its

expected payo� from this route is Π− c/λB. On the other hand, the training route requires

two breakthroughs, each with expected duration of 1/λA. So the planner's expected payo�

from this route is Π− 2c/λA. For the main analysis, we focus on the case where both routes

are equally e�cient: 2λB = λA. In Section 5, we explore the case where the execution route

is more e�cient than the training route: 2λB > λA.
5

We also assume that the project is pro�table enough to be undertaken under the execution

route:

Π >
c

λB
⇐⇒ π ≡ λBΠ

c
> 1, (3.1)

where π denotes the project return.

3.2 Planner's Problem with Exogenous Deadlines

As an intermediate step toward characterizing the optimal contract under an in�nite horizon,

we next consider a setting where the social planner that operates the project itself faces

exogenous deadlines. These deadlines generate ine�ciencies, because if the project is worth

starting (i.e., if (3.1) holds), then it should be run until the problem is solved. This analysis,

which is somewhat involved, is important for understanding elements of the optimal contract

in the presence of agency considerations and is also of independent interest, given the ubiquity

of deadlines.

Assume that the project is exogenously terminated when time passes a deadline T . Ad-

ditionally, the deadline is extended by ∆ ≥ 0 if the advanced skill is acquired before T .6 In

5If the training route were su�ciently more e�cient than the execution route, the principal would rely
exclusively on training. This would yield results similar to the tangible breakthrough case in Green and
Taylor (2016b). To distinguish the analysis from that work, we focus on the parametric regions where there
is tension between choosing two paths.

6Note that ∆ = 0 is permitted. Also, it is possible to consider the case of ∆ < 0, but we show that under
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other words, the planner faces two deadlines: the original deadline T under no skill acquisi-

tion, and the extended deadline T + ∆ upon acquisition of the advanced skill. Given these

deadlines, the planner chooses which route (direct or training) to take at each point in time.

We begin by introducing a benchmark policy where it is optimal for the planner to

initially employ the training route and later switch to the execution route if the advanced

skill is not acquired.

De�nition 1. A policy is called a one-switch policy if there exists an intermediate deadline

S ∈ [0, T ] such that (i) the planner chooses training up to S (at = 0 for t ≤ S), (ii) if the

advanced skill is acquired before S, the planner tries to solve the problem with the advanced

skill until the extended deadline T + ∆, and (iii) if the advanced skill is not acquired by S,

the planner switches to execution until the deadline T .

This class of policies includes two extreme cases. A one-switch policy with S = 0 does not

involve any training, and is referred to as the execution-only policy. Conversely, a one-switch

policy with S = T does not involve any execution (with the basic skill), and is referred to

as the training-only policy.

The following theorem shows that the optimal policy takes the form of a one-switch

policy.

Theorem 1. Suppose that the two routes are equally e�cient (λA = 2λB). When the

planner faces the deadline T and the extension ∆ resulting from the skill acquisition, the

optimal policy is characterized as follows:

(a) (Long extension) if ∆ ≥ ∆̄ ≡ 1
λA

log
[

2π−1
π−1

]
, the training-only policy is optimal;

(b) (Short extension) if ∆ < ∆̄, there exists T̂ > 0 such that

(i) when T < T̂ , the execution-only policy is optimal;

(ii) when T > T̂ , the one-switch policy with the intermediate deadline T−T̂ is optimal.

agency it is optimal to extend�not reduce�the deadline when the agent acquires the advanced skill.
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This theorem implies that the basic skill is never used when the deadline extension is

su�ciently long. On the other hand, when the deadline extension is relatively short, there

exists a time T̂ such that the basic skill begins to be used when fewer than T̂ units of time

remain.

Execution-only vs. training-only policies To provide intuition for Theorem 1, we

compare the probability that the problem is solved by the deadline�namely, the solution

probability�under the training-only policy (A) and the execution-only policy (B).

When the planner adopts the execution policy, the solution probability is

PB(T ) ≡
∫ T

0

λB · e−λBτmdτ = 1− e−λBT , (3.2)

where τ is the date on which the problem is solved.

Next, when the planner employs the training-only policy, the solution probability is

PA(T,∆) ≡
∫ T

0

[∫ T+∆

τs

λAe
−λA(τ−τs)dτ

]
· λAe−λAτsdτs

= 1− (1 + λA · T · e−λA∆) · e−λAT , (3.3)

where τs is the date on which the advanced skill is acquired.

Next we compare the solution probabilities across policies when there is no deadline

extension (∆ = 0). The following lemma shows that PB(T, 0) and PA(T, 0) cross once as T

increases. The proof is in Appendix A.2.

Lemma 1. Suppose that λA > λB and ∆ = 0. There exists Ť such that PB(T, 0) > PA(T, 0)

for all T < Ť and PA(T, 0) > PB(T, 0) for all T > Ť .

Notably, under the execution-only policy, the planner needs only one breakthrough,

whereas the training-only policy requires two, which is challenging within a short time-

frame. Therefore, when the deadline is short (T < Ť ), the solution probability under the
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(a) Long Deadline Extension (∆ = 1) (b) Short Deadline Extension (∆ = .1)

Figure 2: Solving Probabilities (λA = 2, λB = 1, Π = 3, c = 1)

execution-only policy is higher than that under the training-only policy. On the other hand,

when the deadline is relatively long (T > Ť ), achieving two faster breakthroughs can be

easier than achieving one slower breakthrough. In this case, the training-only policy has a

higher chance to solve the problem than the execution-only policy. We call this dynamic the

`deadline e�ect.'

Next, observe that the deadline extension provides additional bene�ts to the training-

only policy: PA(T,∆) increases as ∆ increases. We refer to this as the `milestone e�ect'

because this increase in the solution probability occurs due to the planner's ability to exploit

intermediate progress under the training route.

Based on the deadline and milestone e�ects, we can infer that the execution-only pol-

icy has a higher solution probability than the training-only policy when both the original

deadline and the deadline extension are short. Figure 2 illustrates this. The horizontal axis

represents the deadline T . With the long deadline extension, as depicted in Figure 2a, the

training-only policy always has higher solution probability�the milestone e�ect outweighs

the deadline e�ect. When the extension is short, as depicted in Figure 2b, the execution-only

policy has higher solution probability with short deadlines, whereas the training-only policy

has higher solution probabilities with long deadlines.

These e�ects also play crucial roles in comparing expected surpluses between the two

policies: the execution-only policy can achieve higher expected surplus only when both the
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deadline and the extension are short. This discussion suggests that the one-switch policy�

employing (i) the training route when the deadline is distant and (ii) the execution route

when the deadline is nigh�is likely to be optimal. Theorem 1 con�rms that this is indeed

the case.

Comparative statics of the extension cuto� Theorem 1 shows that there exists a

cuto� for the deadline extension, ∆, such that the training-only policy is optimal if the

extension is longer than the cuto�; otherwise, the basic skill is employed near the deadline.

Observe that

∂∆

∂π
=

1

λA

[
2

2π − 1
− 1

π − 1

]
= − 1

λA(2π − 1)(π − 1)
< 0,

from (3.1). This establishes the following lemma.

Lemma 2. Suppose that λA = 2λB and π > 1. The extension cuto� ∆ decreases in the

project return π.

As the project return increases, the solution probability becomes more important because

it is multiplied by π in the expected surplus. This favors the training route, which has a

higher solution probability when the deadline is su�ciently long. Consequently, the cuto�

∆ decreases as π grows.

4 Agency

4.1 The Necessity of Deadlines

We now return to the contracting problem in which the principal must provide incentives for

the agent to solve the problem for her. Note that the �rst-best outcome cannot be achieved

under asymmetric information and limited liability because, without deadlines, the agent
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would shirk without detection forever and generate an in�nite private bene�t. Hence, an

optimal contract must involve deadlines of some kind, trading o� their inherent ine�ciency

with payment of agency rents.

Remark 1. As is well-known, the principal can generally implement the �rst-best outcome

in moral-hazard settings unless the agent has limited liability or is risk-averse. This is

accomplished in general by selling the agent the project upfront for a price equal to its

�rst-best value; here P = Π −max {2c/λA, c/λB}. Limited liability implies that the agent

lacks the resources to make such an upfront payment, necessitating the use of contractual

deadlines to control rents.

4.2 Contracts

At the beginning of the game, the principal o�ers a contract to the agent and fully commits

to all contractual terms. If the agent rejects the o�er, the principal and the agent receive

payo�s of zero. Note that if the agent has neither solved the problem nor acquired the

advanced skill, calendar time is the only relevant variable summarizing the public history.

We focus on contracts where the agent is always recommended to work; this is without loss of

generality, as the principal's operating cost exceeds the agent's private bene�t from shirking.

A (deterministic) contract is denoted by Γ ≡
{
T, {at, Rt, Γ̂

t}0≤t≤T

}
, where each variable

is de�ned at calendar time t as follows:7

1. T ∈ R+: the deadline date at which the project is terminated absent the solution or

skill acquisition.

2. at ∈ {0, 1}: the principal's recommendation of a route at t where at = 1 represents ex-

ecution (i.e., solving with the basic skill) and at = 0 represents training (i.e., acquiring

the advanced skill);8

7We show that deterministic contracts are optimal. See Remark 2 for a discussion.
8The agent will follow the recommended route because arrival of the skill at t when at = 1 or arrival of

the solution at t when at = 0 results in termination without payment.
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3. Rt ≥ 0: the monetary payment from the principal to the agent for the solution at t;9

4. Γ̂t ≡ {T t, {Rt
s}t≤s≤T t}: an updated contract when the advanced skill is acquired at t;

(a) T t ≥ t: the deadline date at which the project is terminated;

(b) Rt
s ≥ 0: the monetary payment from the principal to the agent for the solution

at time s.

4.3 The Optimal Contract

In this subsection, we characterize the optimal contract in the case where the routes are

equally e�cient. As in the tangible progress case in the mimeo Green and Taylor (2016b), the

optimal contract can be implemented with three key properties: (i) the contract is terminated

after a deadline; (ii) the reward for the project completion, Rt, linearly diminishes over time;

and (iii) the deadline is extended by 1/λA upon advanced skill acquisition.10

Since the contract involves a deadline and an extension upon skill acquisition, Theorem

1 suggests that the optimal choice of approaches over time likely either involve one switch

from the training route to the execution route�or no switch at all. In light of this conjecture,

we de�ne contracts involving the above characteristics as follows.

De�nition 2. A contract is called a one-switch contract with a �nal deadline T and an

intermediate deadline S ∈ (0, T ) if

(i) the agent is recommended to acquire the advanced skill (training route) by S,

(ii) when the advanced skill is acquired before S, the contract is extended by 1/λA and

the reward upon solution at time t is RA
t ≡ φ(T − t+ 2/λA),

9Since both the principal and the agent are risk neutral and do not discount the future, without loss of
generality, all monetary payments to the agent can be backloaded (see, e.g., Ray, 2002). The nonnegativity
of Rt is due to limited liability.

10The details of these properties will be addressed in Section 4.5. What distinguishes this work from Green
and Taylor (2016b) is the presence of the two routes for solving the problem and the principal's choice of
which to recommend at each moment in time.
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(iii) if the advanced skill is not acquired by S, the agent is recommended to switch and

solve the problem using the basic skill (execution route) by T and the reward upon

solution at time t is RB
t ≡ φ(T − t+ 1/λB), and

(iv) the contract is terminated if the problem is not solved by the deadlines (T + 1/λA for

(ii) and T for (iii)).

When S = T , we call the contract a training-only contract, and when S = 0, we call the

contract a execution-only contract.

The following theorem shows that the optimal contract indeed takes one of the above

forms.

Theorem 2. Suppose that the execution and training routes are equally e�cient (λA = 2λB).

There exist thresholds πF , πA and πB such that πA > πB > πF ≡ 1 + φ/c and the optimal

contract can be implemented as follows:

(a) when π > πA, a training-only contract is optimal;

(b) when πA > π > πB, there exists a one-switch contract that is optimal;

(c) when πB > π > πF , an execution-only contract is optimal; and

(d) when π < πF , the project is infeasible.

As discussed in Lemma 2, the execution route is preferred when π is lower and the training

route is preferred when π is higher. The above theorem aligns with that intuition. In the

subsequent subsections, we provide the details of the derivation of this result.

4.4 Promised Utility and Incentive Compatibility

Following the standard approach of the dynamic contract literature, we consider the agent's

promised utility as a state variable and write a contract recursively (e.g., Spear and Srivas-
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tava, 1987). For a contract Γ, let P0(Γ) and U0(Γ) be the expected payo�s of the principal

and the agent at time 0 when the agent works.

The core of the analysis is the derivation of the principal's value function, denoted by

V (u), which represents her maximized expected payo� P0(Γ) subject to the promise-keeping

constraint U0(Γ) = u and the incentive compatibility condition, which will be delineated

later in this subsection. If a contract Γ satis�es P0(Γ) = V (u) and U0(Γ) = u, Γ is said to

implement a pair of expected payo�s (V (u), u). Once the value function is characterized,

the principal solves

ū ≡ arg max
u≥0

V (u). (MP)

Then, the optimal contract is the contract that implements (V (ū), ū). In the rest of this

subsection, we describe how to derive the value function V (u).

Promised utility upon skill acquisition We begin by considering the principal's prob-

lem, given that the advanced skill is acquired at time t. Let utM denote the agent's promised

utility, which will be considered as a state variable. Since this case requires only one more

breakthrough, it is identical to the single-stage benchmark in Green and Taylor (2016a).

They show that the optimal contract is to impose a deadline t+ utM/φ and a linearly dimin-

ishing reward schedule {Řt
s}t≤s≤t+utM/φ where

Řt
s = utM +

φ

λA
− φ(s− t). (4.1)

The intuition is that when the agent's promised utility is utM , the principal can incentivize

the agent to work at most utM/φ units of time. If the principal grants more time without

increasing the agent's expected utility, then he will prefer to shirk out the clock.

Incentive compatibility conditions Now consider the agent's problem when the ad-

vanced skill has not been acquired. Suppose that the promised utility is ut at some time

t. Under the execution route, if the agent works for a small interval of time [t, t + dt), the
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breakthrough occurs and the agent receives the reward Rt with a probability λBdt. In this

event, however, he loses the continuation utility, thus, the expected payo� from working is

λB(Rt − ut)dt. On the other hand, if he shirks, his payo� is φdt. From this, we can derive

the incentive compatibility constraint under the execution route (at = 1):

Rt ≥ ut +
φ

λB
. (IC1)

Next, under the training route, the agent is compensated in the form of a jump in

promised utility upon acquiring the advanced skill. Thus, the expected payo� of working for

[t, t+ dt) is λA(utM − ut)dt. Then, the incentive compatibility constraint under the training

route (at = 0) is

utM ≥ ut +
φ

λA
. (IC0)

4.5 Value Function Characterization

In this subsection, we characterize the value function of the principal. A natural conjecture is

that the principal's expected payo� is maximized when the incentive compatibility conditions

bind.11 We outline some key properties of contracts with binding IC conditions, and then

characterize the value function.

Deadline and extension With binding IC conditions, the agent's promised utilities

should fall at the same rate as the bene�t from shirking: du/dt = u̇t = −φ, or equiva-

lently, ut = u0 − φt. If the problem has not been solved by u0/φ, the promised utility is

equal to the agent's outside option 0, thus, the contract is terminated, or equivalently, the

deadline of the contract is u0/φ.

11See Remark 3 for a discussion of the binding IC condition.
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When the training route is chosen, to make (IC0) bind, we have

t+
utM
φ

= t+
ut
φ

+
1

λA
=
u0

φ
+

1

λA
.

This implies that upon skill acquisition the updated deadline t+ utM/φ extends the original

deadline u0/φ by 1/λA.

Linearly diminishing rewards Let T denote the deadline u0/φ. By using ut = u0−φt =

φ(T − t), to make (IC1) bind, the reward for solving the problem at time t via the execution

route is

Rt = ut +
φ

λB
= φ

(
T − t+

1

λB

)
,

which corresponds to RB
t in De�nition 2.

Next, when the skill is acquired at ť, to make (IC0) bind, we have u
ť
A = uť+φ/λA. Then,

by (4.1), the reward for solving the problem at time t ∈ [ť, T + 1/λA] via the training route

is

Řť
t = uť +

φ

λA
+

φ

λA
− φ(t− ť) = φ

(
T − t+

2

λA

)
,

which corresponds to RA
t in De�nition 2.

Value function Based on the above observations, we surmise that the principal's value

function under agency is linked to the benchmark planner's problem with a deadline and its

extension, as explored in the previous section. Let W∗(T,∆) denote the optimal expected

social surplus under the deadline T and extension ∆, derived from the optimal policy in

Theorem 1. Then, when the agent's promised utility is u, a conjecture for the principal's

value function is the expected social surplus from the deadline u/φ and the extension 1/λA,

W∗(u/φ, 1/λA), net of u.

The following proposition veri�es this conjecture, with the proof provided in Appendix

B.
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Proposition 1. The principal's value function V is characterized as follows:

V(u) =W∗ (u/φ, 1/λA)− u. (4.2)

Moreover, V is concave.

A key step in proving this proposition is �nding a contract implementing the pair of

the agent's promised utility, u, and the principal's expected payo�, V (u). When choosing

a path, the principal's incentives are perfectly aligned with those of the planner�who faces

the same deadlines as the principal�in that both want to maximize the expected surplus.

Since the planner's policy with at most one switch is optimal, we show that the principal

can implement the pair using a contract that involves at most one switch with linearly

diminishing rewards (Appendix B.3).

4.6 Proof of Theorem 2

Now that we have characterized the principal's value function, the next step is to pin down

the optimal initial promised utility level for the agent, ū, which is the solution to (MP).

This will establish the starting point of the contract in Figure 3 and determine the deadline

length, u/φ. The key tradeo� derives from the fact that the rents needed to keep the agent

from shirking grow linearly with the deadline, whereas the marginal bene�t from extending

the deadline falls because the problem is increasingly likely to be solved before the deadline

is reached.

Recall that the basic skill is never employed when the extension is greater than ∆ (Lemma

1 (a)) and the cuto� is decreasing in π (Lemma 2). Let πA be the solution of ∆ = 1/λA.

Then, for all π > πA, the execution route will not be employed, even near the deadline. This

establishes Theorem 2 (a) and is illustrated in Figure 3 (c).

When π < πA, Theorem 1 (b) indicates that the optimal approach is switched from the

training route to the execution route when T̂ units of time remain. In terms of the promised
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(a) Low π (b) Intermediate π (c) High π

Figure 3: Value functions when routes are equally e�cient

utility, the switch happens at û1 ≡ φT̂ . Then, the form of the optimal contract depends on

whether ū is greater than û1 or not. For example, the value functions in Figure 3a and 3b

both involve a switching point û1, however, ū is greater than û1 in Figure 3a and less than

û1 in Figure 3b. Thus, the optimal contracts are an execution-only contract in Figure 3a

and a contract with a switch from the training route to the execution route in Figure 3b.

Let πB be the threshold for the project return where the optimal promised utility u is equal

to the switching point û1. Then, for any π ∈ (πB, πA), the optimal contract will involve a

switch, establishing Theorem 2 (b). Conversely, when π < πB, only the execution route will

appear in the optimal contract.

Last, the feasibility of the project depends on whether ū is greater than 0 or not. When ū

is equal to zero, the principal's expected payo� is maximized at u = 0, meaning it is optimal

for the principal not to initiate the contract�the project is infeasible. This occurs when the

principal's �ow pro�t is negative near the deadline T . Since the promised utility u is close

to zero near the deadline, the reward R is approximately φ/λB. Then, the principal's �ow

pro�t in [T − dt, T ] is approximately

λBdt ·
(

Π− φ

λB

)
− cdt = λB

(
Π− φ+ c

λB

)
dt.

Therefore, the project is feasible if and only if π = λBΠ/c is greater than πF ≡ 1+φ/c. This

makes sense because the principal must pay both the operating cost c and (because incentive

compatibility binds) the shirking bene�t φ for the potential duration of the contract. We
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show that πB ∈ (πF , πA) (Lemma 10). Then, when π ∈ (πF , πB), the execution-only contract

is optimal (Theorem 2 (c)); and when π < πF , the project becomes infeasible (Theorem 2

(d)).

Remark 2. A mixture of contracts also generates another contract. For example, a contract

with a soft deadline�randomly terminating the agent after reaching the soft deadline, as in

Green and Taylor (2016a)�can be represented by a mixture of two contracts de�ned here.

However, a mixed contract cannot improve upon the one characterized above. This follows

because the value function V is concave (Lemma 8 (c)).

Consider a set of contracts {Γi}1≤i≤n where the agent's expected utility under Γi is ui,

and the weight is wi with
∑n

i=1wi = 1 and
∑n

i=1wi ·ui = u. The principal's expected payo�

from this mixture is
∑n

i=1wi · P0(Γi) and the agent's expected utility is u. By concavity, we

have V (u) ≥
∑n

i=1 wiV (ui). Additionally, V (ui) ≥ P0(Γi) holds for all 1 ≤ i ≤ n because

V (ui) is the principal's maximized expected pro�t given that the agent's expected payo� is

ui. Thus, V (u) is greater than or equal to the expected payo� of the mixed contract. Hence,

any mixed contract cannot improve upon the deterministic contract characterized above.

Remark 3. In Green and Taylor (2016b), there is a parametric region where the incentive

compatibility constraint does not bind. This occurs because the deadline extension set by

binding IC is not long enough to make the probability of two breakthroughs su�ciently

high. In contrast, in this model, when such a situation arises, the principal can switch to the

execution path, which is appealing enough to replace the training path. This ensures that

IC is always binding.

5 Extension: E�ciency Loss from Training

We last consider the case where training generates an e�ciency loss, i.e., λA < 2λB. This

introduces e�ciency as another economic force, alongside milestone and deadline e�ects,

that shape the optimal contract.
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(a) Low π (b) Intermediate π (c) High π

Figure 4: Value functions when the e�ciency loss is small

We de�ne a parameter η ≡ λA/λB − 1, which measures the relative e�ciency of the

training path. Note that 0 < η < 1, and the e�ciency loss increases as η decreases. In

this section, we characterize the optimal contracts for two cases: (i) when the e�ciency loss

is small (η > η ≡ max{
√
c/(c+ φ), 1/(e− 1)}); and (ii) when the e�ciency loss is large

(η < η ≡ min{c/(c+ φ), 1/(e− 1)}).12

In Figures 4 and 5, we illustrate the principal's value functions when there are e�ciency

losses from training. A key characteristic of these value functions is that the execution

route is employed when the promised utility is high, indicating that the deadline is far o�.

To understand these dynamics, we compare the execution-only and training-only contracts

again. As time horizons become longer, the sums of expected payo�s for both players from

these contracts converge to the expected surpluses of the no-deadline benchmark: Π− c/λB

for the execution-only contract and Π − 2c/λA for the training-only contract. Therefore,

e�ciency determines which approach should be chosen. Since we focus on the case where

the training route is less e�cient than the execution route, the principal would choose the

execution route when the deadline is distant.

This observation, combined with milestone and deadline e�ects discussed in the previous

sections, leads us to conjecture that there will be two switching points û1 and û2 in deter-

mining the value function. The execution route is chosen when u > û2 or u < û1, and the

training route is chosen when u ∈ (û1, û2).

12These do not cover cases where the e�ciency loss is intermediate. In such cases, the form of the optimal
contract depends heavily on the parameter values η and Π, resulting in many subcases to analyze. Thus, we
focus on the extreme cases to provide results with clear economic implications.
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Small e�ciency loss When the e�ciency loss is relatively small, we show that û2 is

always greater than the optimal initial promised utility level u (Lemma OA.9). It implies

that the switch occurs at most once in the optimal contract. Therefore, a result similar to

the no-e�ciency-loss case holds. In other words, Theorem 2 is robust to small e�ciency

losses.

Proposition 2. Suppose that η ∈ (η, 1), i.e., the e�ciency loss from training is small. There

exist thresholds π̃A(η) and π̃B(η) with π̃A(η) > π̃B(η) > πF such that the optimal contract is

determined as follows:

(a) when π > π̃A(η), a training-only contract is optimal;

(b) when π̃A(η) > π > π̃B(η), there exists a one-switch contract that is optimal;

(c) when π̃B(η) > π > πF , an execution-only contract is optimal.

Large e�ciency loss Now suppose that the e�ciency loss is large. Figure 5 illustrates

that the training path is either not employed at all (for small π) or is employed in the middle

of the contract (for large π). As π increases, the milestone e�ect becomes more signi�cant,

as it actuates the monitoring ability of the principal. However, the execution approach is

preferred at the beginning of the contract due to its e�ciency and at the end of the contract

due to the deadline e�ect. Therefore, if training is ever employed, the contract will involve

two switches. We formally de�ne the two-switch contract and state the theorem for the case

of large e�ciency loss.

De�nition 3. A contract is called a two-switch contract with a �nal deadline T and two

intermediate deadlines 0 < S1 < S2 < T if

(i) the agent is recommended to solve the problem using the basic skill by S1 and the

reward upon project completion at time t is RB
t ,
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(a) Low π (b) High π

Figure 5: Value functions when the e�ciency loss is large

(ii) if the problem is not solved by S1, the agent is recommended to acquire the advanced

skill by S2, and if the advanced skill is acquired before S2, the contract is extended by

1/λA with the reward upon solution at time t being RA
t ,

(iii) if the advanced skill is not acquired by S2, the agent is recommended to solve the

problem using the basic skill by T and the reward upon project completion at time t

is RB
t , and

(iv) the contract is terminated if the project is not completed by T .13

Proposition 3. Suppose that η is less than η, i.e., the e�ciency loss from training is large.

There exists a threshold π̃M(η) with π̃M(η) > πF such that the optimal contract is determined

as follows:

(a) when π > π̃M(η), there exists a two-switch contract that is optimal;

(b) when π̃M(η) > π > πF , an execution-only contract is optimal.

Notably, the principal typically prefers the execution route, since training entails a sub-

stantial e�ciency loss. When π is su�ciently large, however, she may exploit the monitoring

bene�t from the milestone e�ect by choosing the training path. If monitoring occurs, it is

optimal to place it in the middle of the contract: e�ciency dominates at the start, while the

deadline e�ect dominates near the end.

13The rewards RAt and RBt are de�ned in the same way as in the one-switch contract.
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For high-return projects, the theorem shows that all three forces�e�ciency, the milestone

e�ect, and the deadline e�ect�shape the contract. The principal begins with recommending

execution with the basic skill (i.e., e�ciency is the primary concern). If the problem remains

unsolved by a certain time, she recommends acquiring the advanced skill to monitor the

agent and bring them closer to the solution (i.e., the milestone e�ect becomes the primary

concern). She extends the deadline if the agent acquires the advanced skill, but if he does not

acquire it until the deadline is near, the principal reverts to execution with the basic skill in

a �last-ditch� attempt to solve the problem (i.e., the deadline e�ect becomes the preeminent

motivation).

6 Conclusion

In this article, we study the economic tradeo�s between execution and training in solving

a problem in the presence of agency frictions. The optimal contract is determined by the

interplay of three e�ects: e�ciency, milestone, and endogenous deadlines. We show that the

form of the optimal contract crucially depends on the project return. When the e�ciency

loss from training does not exist or is small, the optimal contract involves at most one switch.

Speci�cally, if the project return is low, the principal always recommends the agent to solve

the problem with a basic skill, whereas if the project return is high, the principal always

recommends the agent to acquire the advanced skill, then extend the deadline upon skill

acquisition. If the project return is intermediate, it is optimal to begin with training and

then switch to execution upon lack of skill acquisition. When the e�ciency loss is large, the

principal generally recommends the agent to solve a problem with the more e�cient basic

skill route. However, if the project return is above a certain cuto�, for a short period of time

in the middle of the contract, the principal recommends the agent to acquire the advanced

skill to mitigate moral hazard (i.e., there may be two switches).

There are numerous avenues open for further research. For example, the principal may
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be able to design the approaches directly. In this article, we assume that the two approaches

are exogenously given and the principal chooses between them. However, in practice, a

project manager often designs how many milestones to partition the main project into and

how di�cult each subproject is. We could also introduce `learning by doing' into the model.

If we assume that the agent learns from early errors, the arrival rate of project completion

would increase over time.14 We leave these intriguing questions�and others�for future work.
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Appendix

A Proofs for Section 3

A.1 Expected Surpluses of Benchmark Policies

In this section, we provide formal representations of expected social surpluses under the

execution-only and the training-only policies.

Suppose that the principal employs the execution-only policy. Recall that the solution

probability PB(T ) is derived in (3.2). Next, the expected duration of problem-solving is

DB(T ) ≡
∫ T

0

τ · λB · e−λBτdτ + T · e−λBT =
1

λB
(1− e−λBT ). (A.1)

Then, the expected social surplus of the execution-only policy is

WB(T ) ≡ Π · PB(T )− c · DB(T ) =

(
Π− c

λB

)
· (1− e−λBT ). (A.2)

Now suppose that the planner employs the training-only policy. Also recall that the

solution probability PB(T ) is derived in (3.3). Conditional on advanced skill acquisition at

τs, the expected duration is

D1(T,∆, τs) ≡
∫ T+∆

τs

τ · λAe−λA(τ−τs)dτ + (T + ∆) · e−λA(T+∆−τs).

Then, the expected duration of the project can also be derived as follows:

DA(T,∆) ≡
∫ T

0

D1(T,∆, τs) · λAe−λAτsdτs + T · e−λAT

=
2

λA
(1− e−λAT )− T · e−λA(T+∆). (A.3)
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Then, the expected social surplus of the training-only policy is

WA(T,∆) ≡ Π · PA(T,∆)− c · DA(T,∆) (A.4)

=

(
Π− 2c

λA

)
· (1− e−λAT )− λA

(
Π− c

λA

)
· T · e−λA(T+∆).

A.2 Proof of Lemma 1

Proof of Lemma 1. Observe that PB(T, 0) ≥ PA(T, 0) is equivalent to:

(1 + λAT ) ≥ e(λA−λB)T .

Note that the equality holds at T = 0. While the left hand side linearly increases with the

slope λA, the right-hand side exponentially increases and the slope at T = 0 is λA − λB ∈

(0, λA). Therefore, for small enough T , PB(T, 0) > PA(T, 0), but there exists Ť > 0,

which makes the two sides equal. Then, we have PB(T, 0) > PA(T, 0) for all T < Ť and

PB(T, 0) < PA(T, 0) for all T > Ť .

A.3 Proof of Theorem 1

Expected surplus upon skill acquisition Let W 1
x represent the expected surplus when

the advanced skill is acquired and the remaining time is x. By following steps similar to

those used in the derivation of (A.2), we have

W 1
x ≡

(
Π− c

λA

)
· (1− e−λAx). (A.5)

Suppose that the advanced skill is acquired at calendar time T − z, meaning that z units

of time remain until the original deadline. Then, the skill acquisition extends the deadline
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by ∆, giving the planner z + ∆ units of time to solve the problem. Therefore, the expected

surplus in this situation is W 1
z+∆.

Expected surplus without skill acquisition Now we consider the situation that neither

the problem is solved nor the advanced skill is acquired by calendar time T − z. Then, the

(optimal) expected surplus W 0,∆
z can heuristically be written as follows:

W 0,∆
z = max

az∈{0,1}

Π · λBaz · dz +W 1
z+∆ · λA(1− az) · dz − c dz

+ {1− λBaz · dz − λA(1− az) · dz} ·W 0,∆
z−dz.

By using a Taylor expansion, W 0,∆
z−dz = W 0,∆

z − Ẇ 0
z dz, canceling out W

0,∆
z on both sides,

and taking the limit as dz → 0, we obtain a Hamilton-Jacobi-Bellman (HJB) equation:

Ẇ 0,∆
z = max

az∈{0,1}

[
λBaz · (Π−W 0,∆

z ) + λA(1− az) · (W 1
z+∆ −W 0,∆

z )− c
]
. (HJBW )

Since the project is terminated at the deadline, W 0,∆
0 = 0. Then, by using standard veri�-

cation arguments (e.g., Proposition 3.2.1 in Bertsekas (1995)), if a function w : [0, T ] → R

is di�erentiable and satis�es (HJBW ) and w(0) = 0, then, w(z) = W 0,∆
z .

Expected surplus of the one-switch policy We now derive the expected surplus of the

one-switch policy with an intermediate deadline S and a deadline T . Denote Z ≡ T − S.

The one-switch policy implies that az = 1 for all 0 ≤ z < Z, and az = 0 for all Z ≤ z ≤ T .

LetWAB
Z (z,∆) denote the expected surplus of this policy when the remaining time is z. The

following di�erential equations then hold, where ẆAB
Z =

∂WAB
Z (z,∆)

∂z
:

ẆAB
Z (z,∆) = λA ·

(
W 1
z+∆ −WAB

Z (z,∆)
)
− c for z ≥ Z, (A.6)

ẆAB
Z (z,∆) = λB ·

(
Π−WAB

Z (z,∆)
)
− c for z < Z. (A.7)
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By solving this with WAB
Z (0,∆) = 0, we derive

WAB
Z (z,∆) =



WB(z), if z ≤ Z,(
Π− 2c

λA

)
·
(
1− e−λA(z−Z)

)
+WB(Z) · e−λA(z−Z)

− λA
(

Π− c

λA

)
· (z − Z) · e−λA(z+∆),

if z > Z.

(A.8)

Also note that WAB
0 (z,∆) = WA(z,∆) is the expected surplus of the training-only policy

and WAB
T (z,∆) =WB(z) is the expected surplus of the execution-only policy.

We will prove the theorem by showing that there exists Z ∈ [0, T ] such that WAB
Z (z,∆)

solves (HJBW ).

Optimal path at the deadline Note that W 1
∆ =

(
Π− c

λA

)
· (1− e−λA∆) and W 0,∆

0 = 0.

Then, at the deadline, the training path is preferred over the execution path if and only if

λB(Π−W 0,∆
0 ) ≤ λA(W 1

∆ −W
0,∆
0 )

⇐⇒ λBΠ ≤ (λAΠ− c) · (1− e−λA∆). (A.9)

With λA = 2λB and simple algebra, we can derive that (A.9) is equivalent to ∆ ≥ ∆̄.

Optimal Policy Derivation We introduce two crucial lemmas, then complete the proof

of Theorem 1.

Lemma 3. Suppose that λA = 2λB and ∆ < ∆̄. Then, there exists T̂ such that (i) λB(Π−

WB(z)) > λA(W 1
z+∆−WB(z)) for all z < T̂ ; and (ii) λB(Π−WB(T̂ )) = λA(W 1

T̂+∆
−WB(T̂ )).

Proof of Lemma 3. De�ne H1
z ≡ λA

(
W 1
z+∆ −WB(z)

)
− λB

(
Π−WB(z)

)
and x ≡ e−λBz.

Then, with some algebra, H1
z is equivalent to

H1(x) ≡ (λAΠ− c) · (1− e−λA∆ · x
λA
λB )− λBΠ− (λA − λB) ·

(
Π− c

λB

)
· (1− x). (A.10)
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By using λA = 2λB, with some algebra, H1(x) can be rewritten as follows:

H1(x) = (λBΠ− c) · x− (λAΠ− c) · e−λA∆ · x2

De�ne

x̂ ≡ λBΠ− c
λAΠ− c

· eλA∆. (A.11)

Note that x̂ < 1 when ∆ < ∆. Additionally, observe that H1(x̂) = 0 and H1(x) < 0 for all

x̂ < x ≤ 1.

Now set T̂ ≡ − log(x̂)
λB

. Then, T̂ > z is equivalent to x > x̂, which implies H1(x) < 0.

Therefore, for all z < T̂ , λB(Π −WB(z)) > λA(W 1
z+∆ −WB(z)). In addition, H1(x̂) = 0

implies λB(Π−WB(T̂ )) = λA(W 1
T̂+∆
−WB(T̂ )).

Lemma 4. Suppose that λA = 2λB and λA(W 1
Z+∆ −WB(Z)) ≥ λB(Π −WB(Z)) for some

Z ≥ 0. Then, λA(W 1
z+∆ −WAB

Z (z,∆)) ≥ λB(Π−WAB
Z (z,∆)) for all z > Z.

Proof of Lemma 4. De�ne H2
z ≡ λA(W 1

z+∆ − WAB
Z (z,∆)) − λB(Π − WAB

Z (z,∆)) and y ≡

e−λA(z−Z). Note that, for any z > Z,

WAB
Z (z,∆) =WB(Z) +

(
Π− 2c

λA
−WB(Z)

)
· (1− y)

+

(
Π− c

λA

)
· e−λA(Z+∆) · log(y) · y

and

W 1
z+∆ = W 1

Z+∆ +

(
Π− c

λA
−W 1

Z+∆

)
· (1− y) .

Then, with some algebra, H2
z can be rewritten as follows:

H2(y) ≡ H2
Z + h1 · (1− y) + h2 · log(y) · y (A.12)
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where

h1 ≡λA ·
(

Π− c

λA
−W 1

Z+∆

)
− (λA − λB) ·

(
Π− 2c

λA
−WB(Z)

)
,

h2 ≡
(

Π− c

λA

)
· e−λA(Z+∆) > 0.

Observe that

H ′′2 (y) = −h2

y
< 0,

i.e., H2 is strictly concave. By the assumption, we have H2(1) = H2
Z ≥ 0. In addition, we

have

lim
y→0

H2(y) = λA

(
Π− c

λA

)
− λBΠ− (λA − λB)

(
Π− 2c

λA

)
=
λA − 2λB

λA
c = 0. (A.13)

Then, by using the strict concavity of H2, H2(1) ≥ 0 and limy→0H2(y) = 0, we have

H2(y) ≥ 0 for all y ∈ (0, 1). Therefore, λA(W 1
z+∆ −WAB

Z (z,∆)) ≥ λB(Π −WAB
Z (z,∆)) for

all z > Z.

Proof of Theorem 1. (a) Suppose that ∆ ≥ ∆̄. From (A.9) and WB(0) = 0, we have

λA(W 1
∆ −WB(0)) ≥ λB(Π−WB(0)). Then, by Lemma 4, λA(W 1

z+∆ −WAB
0 (z,∆)) ≥

λB(Π−WAB
0 (z,∆)) for all z > 0. Then, by (A.6), WA

z,∆ =WAB
0 (z,∆) solves (HJBW )

for all z ∈ R+, i.e., the training-only policy is optimal.

(b) Suppose that ∆ < ∆̄. Let T̂ be the time de�ned in Lemma 3. If T < T̂ , λB(Π −

WB(z)) > λA(W 1
z+∆ − WB(z)) for all z ∈ [0, T ]. Then, by (A.7), WB(z) solves

(HJBW ) for all z ∈ [0, T ], i.e., the execution-only policy is optimal.

Now consider the case with T ≥ T̂ . Note that WAB
T̂

(z,∆) = WB
z for all z ∈ [0, T̂ ].

From Lemma 3, we have λB(Π −WAB
T̂

(z,∆)) > λA(W 1
z+∆ −WAB

T̂
(z,∆)) for all z ∈

(T̂ , T ]. Then, by (A.7), WAB
T̂

(z,∆) solves (HJBW ) for all z > T̂ . In addition, we have

λB(Π −WAB
T̂

(T̂ ,∆)) = λA(W 1
T̂+∆
−WAB

T̂
(T̂ ,∆)). By applying Lemma 4 for Z = T̂ ,
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we have λA(W 1
z+∆−WAB

T̂
(z,∆)) ≥ λB(Π−WAB

T̂
(z,∆)) for all z > T̂ . Then, by (A.6),

WAB
T̂

(z,∆) solves (HJBW ) for all z > T̂ . Therefore, WAB
T̂

(z,∆) solves (HJBW ) for all

z ∈ [0, T ], i.e., the one-switch policy with T − T̂ is optimal.

B Proofs for Section 4

B.1 Expected Payo�s

In this section, we formally present the expected payo�s of the principal and the agent,

conditional on the agent's e�ort schedule.

Post-skill-acquisition payo�s We begin with the subgame where the advanced skill is

acquired at time t. Let utM denote the agent's continuation utility�the expected payo� when

the agent works until the problem is solved or the deadline T t is reached.15

Since this subgame only requires one more breakthrough, it is identical to the single-stage

benchmark of Green and Taylor (2016a). They show that the principal's value function VM

is characterized as follows:

VM(utM) = W 1
utM/φ

− utM =

(
Π− c

λA

)(
1− e−

λA
φ
utM

)
− utM . (B.1)

Expected payo�s at time 0 Now consider the problem at time 0. The agent's admissible

e�ort schedule (prior to either solution or skill acquisition) is B ≡ {{βt}0≤t≤T : βt ∈ {0, 1}}.

In this case, any arrival depends not only on the agent's e�ort (β) but also the principal's

path choice (a = {at}0≤t≤T ). Given (a, β), the probability that neither the solution nor the

15Speci�cally, the updated contract Γ̂t determines
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advanced skill has arrived by time τ is f(a, β; 0, τ), where

f(a, β; t, τ) ≡ e−λB
∫ τ
t asβsds−λA

∫ τ
t (1−as)βsds.

Accordingly, the probability density of the solution at time τ is λBaτβτ · f(a, β; 0, τ) and

that of the skill acquisition at time τ is λA(1 − aτ )βτ · f(a, β; 0, τ). If the agent follows

the recommendation, the above expressions simplify to: f̃(a; t, τ) ≡ e−λB
∫ τ
t asds−λA

∫ τ
t (1−as)ds,

λBaτ · f̃(a; t, τ), and λA(1− aτ ) · f̃(a; t, τ).

Given a contract Γ, an e�ort schedule β and under the assumption that the agent follows

the recommendation in the updated contract, the principal's expected payo� at time 0 is:

P0(β,Γ) ≡
∫ T

0

{(Π−Rτ ) · λBaτβτ + VM(uτM) · λA(1− aτ )βτ − c} · f(a, β; 0, τ)dτ.

while the agent's expected payo� at time t is:

U0(β,Γ) ≡
∫ T

0

{Rτ · λBaτβτ + uτM · λA(1− aτ )βτ + φ(1− βτ )} · f(a, β; 0, τ)dτ.

Similarly, the expected payo�s of the principal and the agent when the agent follows the

recommendation can be obtained by evaluating the general expressions using f̃(a; 0, τ) in

place of f(a, β̂t; 0, τ). We denote these by P̃0(Γ) and Ũ0(Γ), respectively.

Incentive Compatibility Using the terms de�ned above, we de�ne incentive compatibil-

ity (IC) of contracts as follows.

De�nition 4. A contract Γ =
{
T, {at, Rt, Γ̂

t}0≤t≤T

}
is incentive compatible if Ũ0(Γ) ≥

U0(β,Γ) for all β ∈ B.

The objective of the principal is to �nd a contract Γ that maximizes her ex ante expected

payo� P0(Γ) subject to the incentive compatibility constraint and the limited liability con-

straints Rτ ≥ 0 for all τ ∈ [0, T ] and Rt
τ ≥ 0 for all t ∈ [0, T ] and τ ∈ [t, T t]. Designate such
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a contract as an optimal contract.

B.2 Recursive Formulation

B.2.1 The Agent's Problem

Given a contract Γ, de�ne the continuation utility that the advanced skill is acquired at t

as utM = Ũ t(Γ̂t) and the continuation utility at t when neither the problem is solved nor the

advanced skill is acquired as

ut = Ũt(Γ) ≡
∫ T

t

{
Rτ · λBaτ + utM · λA(1− aτ )

}
· f̃(a; t, τ)dτ.

Observe that

0 = u̇t + (Rt − ut)λBat + (utM − ut)λA(1− at) (HJBPK)

where u̇t ≡ dut
dt
.

Also note that (IC0) for at = 0 and (IC1) for at = 1 can be written together as follows:

(Rt − ut)λBat + (utM − ut)λA(1− at) ≥ φ. (IC)

The following lemma shows that this condition serves as a su�cient condition for incentive

compatibility de�ned in De�nition 4.

Lemma 5. Given a contract Γ, suppose that there exists a continuous and di�erentiable

process {ut}0≤t≤T satisfying (HJBPK) and uT = 0, and (IC) holds for 0 ≤ t ≤ T . Then, Γ

is incentive compatible.

Proof of Lemma 5. The proof is inspired by Proposition 3.2.1 in Bertsekas (1995).

Consider an arbitrary admissible action β ∈ B. Using (HJBPK), (IC0) and (IC1), we can
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derive that

0 ≥ u̇t + (Rt − ut)λBatβt + (utM − ut)λA(1− at)βt + φ(1− βt),

or equivalently,

−u̇t + (λBat + λA(1− at))βt · ut ≥ Rt · λBatβt + utM · λA(1− at)βt + φ(1− βt).

It is further equivalent to

d

dt
[−ut · f(a, β; 0, t)] ≥

[(
RtλBat + utMλA(1− at)

)
βt + φ(1− βt)

]
· f(a, β; 0, t).

By integrating the above inequality from 0 to T and using uT = 0, we can derive that

u0 ≥
∫ T

0

[(
RtλBat + utMλA(1− at)

)
βt + φ(1− βt)

]
· f(a, β; 0, t)dt = U0(β,Γ)

for all β ∈ B. Furthermore, the equality holds when βt = 1 for all t ∈ [0, T ] from (HJBPK),

i.e., u0 is equal to Ũ0(Γ). Thus, Ũ0(Γ) ≥ U0(β,Γ) for all β ∈ B, which implies incentive

compatibility.

B.2.2 The Principal's Problem

We now explore how the principal's value function V (ut) evolves. Note that V (0) = 0 since

the agent will not participate in the contract when the continuation utility is zero. This

will serve as a boundary condition. The value function V (ut) can be heuristically written as

follows:

V (ut) = max
Rt,utM ,at

− cdt+ (Π−Rt)λBatdt+ VM(utM)λA(1− at)dt

+ {1− λBatdt− λA(1− at)dt} · V (ut+dt)
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subject to (IC).

By using V (ut+dt) = V (ut) + V ′(ut)u̇tdt + o(dt), canceling V (ut) on both sides, taking

the limit as dt→ 0 and plugging (HJBPK) in, we obtain an HJB equation:

0 = max
R,uM ,a

J (V (·), R, uM , a). (HJBV )

where

J (V (·), R, uM , a) ≡− c+ (Π−R− V (u))λBa+ (VM(uM)− V (u))λA(1− a)

− {(R− u)λBa+ (uM − u)λA(1− a)} · V ′(u) (B.2)

Then, the principal's problem is to solve (HJBV ) subject to (IC) with the boundary

condition V (0) = 0. The following lemma shows that the solution of the problem maximizes

the principal's expected payo� subject to a promise keeping constraint U0(Γ) = u.

Lemma 6 (Veri�cation Lemma). Suppose that a di�erentiable and concave function Ṽ solves

(HJBV ) subject to (IC) with the boundary condition Ṽ (0) = 0. Then, for any incentive-

compatible contract Γ with U0(Γ) = u,

Ṽ (u) ≥ P̃0(Γ).

Proof of Lemma 6. Consider an arbitrary (deterministic) incentive-compatible contract Γ

where the agent's expected payo� is given by ut. The payo� to the principal under Γ is

P̃0(Γ) =

∫ T

0

(Π−Rt − c · t) · λBatf̃(a; 0, t)dt

+

∫ T

0

(
VM(utM)− c · t

)
· λA(1− at)f̃(a; 0, t)dt− c · T · f̃(a; 0, T )

=

∫ T

0

(
(Π−Rt) · λBat + VM(utM) · λA(1− at)− c

)
f̃(a; 0, t)dt.
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Since Ṽ solves the HJB equation, we have

0 ≥− c+ (Π−Rt − Ṽ (ut))λBat + (VM(utM)− Ṽ (ut))λA(1− at)

−
{

(Rt − ut) · λBat + (utM − ut) · λA(1− at)
}
Ṽ ′(ut).

By using (HJBPK), rearranging, and multiplying by f̃(a; 0, t), we can obtain that

(λBat + λA(1− at))f̃(a; 0, t) · Ṽ (ut)− f̃(a; 0, t) · Ṽ ′(ut)u̇t

≥f̃(a; 0, t)
(
(Π−Rt) · λBat + VM(utM) · λA(1− at)− c

) (B.3)

Note that

d

dt

(
−f̃(a; 0, t) · Ṽ (ut)

)
= (λBat + λA(1− at))f̃(a; 0, t) · Ṽ (ut)− f̃(a; 0, t) · Ṽ ′(ut)u̇t.

Then, by integrating (B.3) over [0, T ] and noting that f̃(a; 0, 0) = 1, uT = 0 and Ṽ (0) = 0,

we have

Ṽ (u0) = Ṽ (u0)− f̃(a; 0, T )Ṽ (uT )

≥
∫ T

0

f̃(a; 0, t) ·
(
(Π−Rt) · λBat + VM(utM) · λA(1− at)− c

)
dt = P̃0(Γ).

Therefore, Ṽ (u0) is greater than or equal to any deterministic contract where the agent's

expected payo� is equal to u0. Since Ṽ is assumed to be concave, it is greater than or equal

to any randomized contract.

B.3 Value Function Candidates and Implementation

Lemma 7. The following statements hold.

(a) An execution-only contract with the deadline u/φ implements a pair of expected payo�s
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of the principal and the agent (V B(u), u) where

V B(u) ≡ WB

(
u

φ

)
− u. (B.4)

(b) When 0 < u1 < u, a one-switch contract with the intermediate deadline (u− u1)/φ

and the �nal deadline u/φ implements (V AB(u|u1), u) where

V AB(u|u1) ≡ WAB
u1/φ

(
u

φ
,

1

λA

)
− u. (B.5)

(c) A training-only contract with the deadline u/φ implements (V AB(u|0), u).

(d) The following di�erential equations hold:

φV B ′(u) = λB

(
Π− φ

λB
− u− V B(u)

)
− c, (B.6)

φV AB ′(u|u1) = λA

(
VM(u+ φ

λA
)− V AB(u|u1)

)
− c. (B.7)

Together with Theorem 1, this lemma implies that (V(u), u)�de�ned in (4.2)�can be

implemented by one of the above three contracts. Moreover, there exists û1 ≥ 0 such that

V can be rewritten as follows:

V(u) =


V B(u), if u < û1,

V AB(u|û1), if u ≥ û1.

(B.8)

Speci�cally, û1 is chosen to be equal to φT̂ if 1/λA < ∆, and 0 if 1/λA ≥ ∆. The following

lemma provides useful properties of V and û1.

Lemma 8. Suppose that λA = 2λB. The following statements hold.

(a) if û1 > 0, V AB ′(û1|û1) = V B ′(û1) and V AB ′(u|u) < V B ′(u) for all u < u1, and if

û1 = 0, V AB ′(0|0) ≥ V B ′(0).
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(b) V ′(u) ≥ −1 for all u ≥ 0.

(c) V is concave.

B.3.1 Proof of Lemmas

Proof of Lemma 7. (a) Let ΓB(T ) denote a execution-only contract with the deadline T .

The agent's expected payo� is

U0(ΓB(T )) =

∫ T

0

RτλBe
−λBτdτ =

∫ T

0

φ

(
T − τ +

1

λB

)
λBe

−λBτdτ

=− φ (T − τ) e−λBτ
∣∣∣T
0

= φT.

Therefore, U0(ΓB(u/φ)) = u.

Also note that the sum of the expected payo�s of the principal and the agent should

equal to the expected surplus from the execution-only policy with a deadline of T :

P0(ΓB(T )) + U0(ΓB(T )) =WB(T ).

Therefore,

P0 (ΓB (u/φ)) =WB (u/φ)− u = V B(u).

(b) Let ΓAB(T1, T ) denote a contract with a switch from the training path to the execu-

tion path at T1 and the deadline T . The subcontract at time t ≤ T1 is denoted by

Γ̂AB(t|T1, T ). Then, the agent's expected payo� for the subcontract Γ̂AB(t|T1, T ) at
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time t is

Ut(Γ̂AB(t|T1, T )) =

∫ T+ 1
λA

t

φ

(
T +

1

λA
− τ +

1

λA

)
λAe

−λA(τ−t)dτ

=− φ
(
T +

1

λA
− τ
)
e−λA(τ−t)

∣∣∣T+ 1
λA

t
= φ

(
T +

1

λA
− t
)
.

Also note that

∫ T1

0

Uτ (Γ̂AB(τ |T1, T ))λAe
−λAτdτs =

∫ T1

0

φ(T +
1

λA
− τ)λAe

−λAτdτ

=− φ(T − τ)e−λAτ
∣∣T1
0

= φT − φ(T − T1)e−λAT1 .

Then, the agent's expected payo� at time 0 is

U0(ΓAB(T1, T )) =

∫ T1

0

Uτ (Γ̂AB(τ |T1, T ))λAe
−λAτdτ

+ e−λAT1
∫ T

T1

φ(T +
1

λB
− τ)λBe

−λB(τ−T1)dτ

=φT − φ(T − T1)e−λAT1 − e−λAT1
[
φ (T − τ) e−λB(τ−T1)

∣∣T
T1

]
= φT.

Thus, U0(ΓAB(T1, u/φ)) = u.

As in the previous case, the sum of the expected payo�s of the principal and the agent

is equal to the one-switch policy with the intermediate deadline T1, the deadline T ,

and the extension 1/λA:

P0(ΓAB(T1, T )) + U0(ΓAB(T1, T )) =WAB
T−T1(T, 1/λA).

By plugging in T = u/φ and T1 = (u− u1)/φ, (B.5) holds.

(c) Note that a training-only contract with a deadline T is equivalent to a contract with

a switch from the training path to the execution path at T1 = T and a deadline
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T . Therefore, by the previous result, a training-only contract with the deadline u/φ

implements (V AB(u|0), u).

(d) By the construction of WB,

ẆB(T ) = λB(Π−WB(T ))− c, (B.9)

for all T ≥ 0. Similarly,

ẆAB
T̂

(T, 1/λA) = λA(W 1
T+1/λA

−WAB
T̂

(T, 1/λA))− c, (B.10)

for all T ≥ T̂ .

Using the de�nitions of V B, V AB and VM , (B.6) and (B.7) follow.

Proof of Lemma 8. (a) Suppose that û1 > 0, which implies that 1/λA < ∆. Now set

∆ = 1/λA. In Lemma 3, T̂ is chosen to satisfy λB(Π−WB(T̂ )) = λA(W 1
T̂+1/λA

−WB(T̂ ))

and λB(Π−WB(z)) > λA(W 1
z+1/λA

−WB(z)) for all z < T̂ .

Using Lemma 7 (d) and WB(T̂ ) = WAB
T̂

(T̂ , 1/λA), we can derive that V AB ′(û1|û1) =

V B ′(û1) and V AB ′(u|u) < V B ′(u) for all u < û1.

When û1 = 0, and thereby 1/λA ≥ ∆, it follows from (A.9) that V AB ′(û1|û1) ≥

V B ′(û1).

(b) Since a longer the deadline increases the expected social surplus,W∗(T,∆) is increasing

in T . Therefore,

V ′(u) =
Ẇ∗(u/φ, 1/λA)

φ
− 1 ≥ −1.

(c) If u ≤ û1,

V ′′(u) = V B ′′(u) = −
(

Π− c

λB

)
λ2
B

φ2
e−

λB
φ
u < 0.
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Now assume that u > û1. By using (B.9), (B.10) and V B ′(û1) ≤ V AB ′(û1|û1), we can

derive that

WB(û1/φ) ≤ Π− c

λA − λB
− λA
λA − λB

(
Π− c

λA

)
e−

λA
φ
û1−1. (B.11)

Using (A.8), we can derive the followings though some algebra:

V AB ′′(u|û1) =

(
λA
φ

)2

e
λA
φ

(û1−u)

[
WB( û1

φ
)−

(
Π− 2c

λA

)
+ 2

(
Π− c

λA

)
e−

λA
φ
û1−1

]
−
(

Π− c

λA

)(
λA
φ

)3

(u− û1)e
−λA

φ
(u+ 1

λA
)

By plugging (B.11) in, we have

V AB ′′(u|û1) ≤
(
λA
φ

)2

e
λA
φ

(û1−u)

[
λA − 2λB

λA(λA − λB)
c+

λA − 2λB
λA − λB

(
Π− c

λA

)
e−

λA
φ
û1−1

]
−
(

Π− c

λA

)(
λA
φ

)3

(u− û1)e
−λA

φ
(u+ 1

λA
)
. (B.12)

Then, from λA = 2λB, V ′′(u) = V AB ′′(u|û1) ≤ 0 for all u ≥ û1.

B.4 Value Function Veri�cation (Proposition 1)

The goal of this subsection is to prove Proposition 1. Speci�cally, we show that the value

function de�ned in the previous section solves (HJBV ) subject to (IC). To achieve this, we

introduce functions that specify potential deviations and then establish useful properties as

a lemma, followed by the proof for Proposition 1.

First, de�ne

LB(u,R) ≡ J (V(·), R, ·, 1) = λB(Π−R− V(u))− c− λB(R− u)V ′(u). (B.13)

45



Given u, maximizing this function with respect to R ≥ u+φ/λB is equivalent to maximizing

the right hand side of (HJBV ) under (IC) with a = 1.

Similarly, de�ne

LA(u,w) ≡ J (V(·), ·, w, 0) = λA(VM(w)− V(u))− c− λA(w − u)V ′(u). (B.14)

Given u, maximizing this function with respect to w ≥ u+φ/λA is equivalent to maximizing

the right hand side of (HJBV ) under (IC) with a = 0.

Lemma 9. Suppose that Π > c/λB and λA = 2λB. Then, for any u ≥ 0, LB(u,R) ≤ 0 for

all R ≥ u+ φ/λB, and L
A(u,w) ≤ 0 for all w ≥ u+ φ/λA.

Proof of Lemma 9. We begin by showing LB(u,R) ≤ 0 for all R ≥ u+ φ/λB. Observe that

∂LB

∂R
= −λB(1 + V ′(u)) ≤ 0.

from Lemma 8 (b). Also note that

LB(u, u+ φ/λB) =λB(Π− u− V(u))− c− φ(V ′(u) + 1)

=λB(Π−W∗(u/φ, 1/λA))− c− Ẇ∗(u/φ, 1/λA) ≤ 0.

The last inequality is due to (HJBW ). Therefore, LB(u,R) ≤ 0 for all R ≥ u+ φ/λB.

For LA, observe that

∂LA

∂u
= −λA(w − u)V ′′(u) ≥ 0

by the concavity of V . Therefore, it is su�cient to check whether LA(u, u + φ/λA) ≤ 0 for

all u ≥ 0.

Note that for all u ≥ û1, L
A(u, u + φ/λA) = 0 holds by (B.7). Now, suppose that

u < û1, thereby V(u) = V B(u). Using (B.7) and Lemma 8 (a), we have LA(u, u + φ/λA) =

φ(V AB ′(u|u)− V B ′(u)) < 0 for all u < û1.
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Now We prove Proposition 1.

Proof of Proposition 1. We begin by showing that J becomes zero when the value function

V is utilized alongside contractual terms with binding ICs.

When u ≥ û1, V(u) = V AB(u|û1). Then, by (B.7),

J
(
V AB(u|û1), ·, u+ φ/λA, 0

)
= 0.

Likewise, when u < û1, V(u) = V B(u|), and by (B.6),

J
(
V B(u), u+ φ/λB, ·, , 1

)
= 0.

Lemma 9 shows that J is nonpositive for any feasible deviations. Therefore, V solves

(HJBV ) subject to (IC).

The concavity of V is shown in Lemma 8 (c). If û1 = 0, V(u) = V AB(u|0) is di�erentiable

for all u ≥ 0. If û1 > 0, V B(u) is di�erentiable for all u < û1 and V
AB(u|û1) is di�erentiable

for all u > û. By Lemma 8 (a), V is di�erentiable at û1 as well. Also note that V(0) = 0.

Therefore, by Lemma 6, for any incentive compatible contract promising the agent u units

of utility, the principal's expected payo� is lower than or equal to V(u).

Last, by Lemma 7, there exists a contract implementing (V(u), u). Therefore, V(u) is the

principal's maximized expected payo� subject to the promise-keeping constraint U0(Γ) = u

and the incentive compatibility constraints.

B.5 Thresholds

In this section, we explain how to pin down the thresholds πB and πA and provide some

properties of them.
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First, recall that πA is the solution of 1/λA = ∆. This gives us

1

λA
=

1

λA
log

[
2π − 1

π − 1

]
⇔ πA =

e− 1

e− 2
≈ 2.392. (B.15)

Also recall that the threshold is relevant to whether the switching point û1 is greater

than u or not. Since V is concave, û1 ≤ u if and only if V ′(û1) ≥ 0. Observe that by using

the formula of V B and (A.11), we can derive that

V ′(û1) = V B ′(û1) =
(λBΠ− c)2

φ · (λAΠ− c)
e− 1.

By solving the equation making the above equal to zero, it follows that V ′(û1) ≥ 0 if and

only if

π ≤ πB ≡
c · e+ φ+

√
φ(c · e+ φ)

c · e
. (B.16)

We conclude the section by showing that πB lies between πF and πA.

Lemma 10. When λA = 2λB, πB ∈ (πF , πA).

Proof of Lemma 10. From φ ≤ c, we have

πB ≤
(e+ 1) +

√
e+ 1

e
≈ 2.077.

Therefore, by (B.15), πB < πA.

Next, observe that

πB − πF =
−φ(e− 1) +

√
φ(c · e+ φ)

c · e
≥ φ(

√
e+ 1− (e− 1))

c · e
.

Since
√
e+ 1− (e− 1) ≈ .21 > 0, πB > πF .
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Online Appendix for

�Execution vs. Training under Endogenous Deadlines�

Yonggyun Kim Curtis Taylor

In this online appendix, we provide the proofs for Section 5, speci�cally the value func-

tion and optimal contract characterizations when there is an e�ciency loss from training

(Proposition 4, Proposition 2, and Proposition 3). Some results in Appendix B can still

be utilized (e.g., Lemma 5, Lemma 6, and Lemma 7) as they do not use the parametric

assumption λA = 2λB.

OA.1 Value Function Characterization

We begin by specifying a value function that can be implemented by a two-switch contract

de�ned in De�nition 3.

Lemma OA.1. The following statements hold.

(a) When 0 < u1 < u2 < u, a two-switch contract with the intermediate deadlines

(u− u2)/φ, (u− u1)/φ and the �nal deadline u/φ implements (V BAB(u|u1, u2), u) where

V BAB(u|u1, u2) ≡
(

Π− c

λB

)(
1− e

λB
φ

(u2−u)
)

+ (V AB(u2|u1) + u2)e
λB
φ

(u2−u) − u.

(OA.1.1)

(b) The following di�erential equation holds:

φV BAB ′(u|u1, u2) = λB

(
Π− φ

λB
− u− V BAB(u|u1, u2)

)
− c. (OA.1.2)
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Proof of Lemma OA.1. (a) Let ΓBAB(T1, T2, T ) denote a contract with two switches at

T1 = (u − u2)/φ and T2 = (u − u1)/φ and a deadline T = u/φ. Note that at time T1

(if the problem has not been solved), the remaining contract is equivalent to ΓAB(T2−

T1, T − T1). Recall that U0(ΓAB(T2 − T1, T − T1)) = φ(T − T1). Then, the agent's

expected payo� at time 0 is

U0(ΓBAB(T1, T2, T )) =

∫ T1

0

φ(T + 1/λB − τ)λBe
−λBτdτ

+ e−λAT1U0(ΓAB(T2 − T1, T − T1))

=φT − φ(T − T1)e−λBT1 + e−λBT1φ(T − T1) = φT = u.

Also note that

P0(ΓBAB(T1, T2, T )) + U0(ΓBAB(T1, T2, T ))

=

∫ T1

0

(Π− cτ)λBe
−λBτdτ − cT1e

−λBT1

+ e−λBT1(P0(ΓAB(T2 − T1, T − T1)) + U0(ΓAB(T2 − T1, T − T1))).

Recall that U0(ΓAB(T ′2, T
′
1)) + P0(ΓAB(T ′2, T

′
1)) = V AB(φT ′1|φ(T ′1 − T ′2)) + φ(T ′1 − T ′2).

By plugging in T ′1 = T − T1, T
′
2 = T2 − T1, φT1 = u− u2 and φT2 = u− u1, the right

hand side of the above equation is equal to:

(
Π− c

λB

)
(1− e−λBT1) + e−λBT1 ·

{
V AB(u2|u1) + u2

}
= V BAB(u) + u,

thus, P0(ΓBAB(T1, T2, T )) = V BAB(u|u1, u2).
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(b) Last, by taking the derivative of (OA.1.1) and multiplying by φ, we have

φV BAB ′(u|u1, u2) =λB

(
Π− c

λB

)
e
λB
φ

(u2−u) − λB
(
V AB(u2|u1) + u2

)
e
λB
φ

(u2−u) − φ

=λB

(
Π− φ

λB
− u− V BAB(u|u1, u2)

)
− c,

thus, (OA.1.2) holds.

Based on the intuition presented in the main text, we conjecture the value function

de�ned as follows.

V(u) =


V B(u), if 0 ≤ u ≤ û1,

V AB(u|û1), if û1 < u ≤ û2,

V BAB(u|û1, û2), if û2 < u.

(OA.1.3)

The following proposition shows that there exist û1 and û2 such that the above three value

functions are smoothly pasted, and the resulting function is the principal's value function.

Proposition 4. Suppose that η is less than 1.

(a) (Smooth Pasting) There exist û2 ≥ û1 ≥ 0 such that

i. V B ′(u) > V AB ′(u|u) for all 0 ≤ u < û1;

ii. V AB ′(û1|û1) ≥ V B ′(û1), and if the equality holds, V AB ′′(û1|û1) > V B ′′(û1);

iii. V AB ′(u|û1) > V BAB ′(u|û1, u) for all û1 < u < û2;

iv. V BAB ′(û2|û1, û2) = V AB ′(û2|û1) and V BAB ′′(û2|û1, û2) > V AB ′′(û2|û1);

v. V BAB ′(u|û1, û2) > 1
φ

[
λA(VM(u+ φ/λA)− V BAB(u|û1, û2))− c

]
for all u > û2.

(b) (Large Loss) If η ≤ 1
e−1

, there exists π̃M(η) such that
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i. û2 = û1 = 0 if π̃M(η) ≥ π > c
λB

;

ii. û2 > û1 > 0 if π > π̃M(η).

(c) (Small Loss) If 1
e−1

< η < 1, there exist π̃A(η) > π̃B(η) such that

i. û2 = û1 = 0 if π̃B(η) ≥ π > 1;

ii. û2 > û1 > 0 if π̃A(η) ≥ π > π̃B(η);

iii. û2 > û1 = 0 if π ≥ π̃B(η).

(d) The function V de�ned in (OA.1.3), with û1 and û2 derived in (a), serves as the

principal's value function.

OA.1.1 Proof of Proposition 4

We begin by identifying which approach will be chosen at the deadline. Note that the

execution path is chosen at the deadline if and only if V B ′(0) > V AB ′(0|0). The following

lemma provides the parametric condition for this.

Lemma OA.2. If η ≤ 1/(e− 1), the inequality V B ′(0) > V AB ′(0|0) always holds. If η >

1/(e− 1), V B ′(0) > V AB ′(0|0) is equivalent to

π < π̃A(η) ≡ e− 1

η(e− 1)− 1
.

Moreover, if π = π̃A(η), then V B ′(0) = V AB ′(0|0) and V B ′′(0) < V AB ′′(0|0).

Proof of Lemma OA.2. By V B(0) = V AB(0|0) = 0 and Lemma 7 (d), we have

φV B ′(0) = λBΠ− φ− c,

φV AB ′(0|0) = λAVM(
φ

λA
)− c = λA

(
Π− c

λA

)
(1− e−1)− φ− c.
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Therefore, V B ′(0) > V AB ′(0|0) is equivalent to:

(η(e− 1)− 1)λBΠ < c(e− 1).

Therefore, when η ≤ 1
e−1

, V B ′(0) > V AB ′(0|0) always holds, and when η > 1
e−1

, V B ′(0) >

V AB ′(0|0) is equivalent to π < π̃A(η).

Next, assume that η > 1/(e− 1) and π = π̃A(η). With some algebra, it follows that

φ2V AB ′′(0|0)− φ2V B ′′(0) = λBc

[
(e− 1)η2

(e− 1)η − 1

]
.

The right hand side is positive from η > 1/(e− 1), thus, V AB ′′(0|0) > V B ′′(0).

Next, we establish a condition under which the execution route is always employed.

When this condition does not hold, a switch from execution to training occurs. We show the

existence of the switching point û1.

Lemma OA.3. There exists π̃M(η) ≥ 2λB/λA = 2/(η + 1) with π̃M(1) = 1 such that the

following statements hold.

(a) If 1 ≤ π < π̃M(η), V B ′(u) > V AB ′(u|u) for all u ≥ 0.

(b) Suppose that one of the following statements hold: (i) η ≤ 1/(e− 1) and π > π̃M(η);

(ii) η > 1/(e− 1) and π̃A(η) ≥ π > π̃M(η). Then, there exists û1 > 0 such that

V B ′(û1) = V AB ′(û1|û1), V B ′′(û1) < V AB ′′(û1|û1) and V B ′(u) > V AB ′(u|u) for all

u ∈ [0, û1);

Proof of Lemma OA.3. De�ne x ≡ e−
λB
φ
u. Using (B.6) and (B.7), φV AB ′(u|u) − φV B ′(u)

can be expressed in the form of H1(x) with ∆ = 1/λA, as de�ned in (A.10) in the proof

of Lemma 3. We also consider this as a function of π. With the de�nition of η, it can be
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rewritten as follows:

H̃1(x; π) ≡ −{(η + 1)π − 1} · c · e−1xη+1 + η(π − 1) · c · x− (1− η) · c. (OA.1.4)

Observe that

∂2H̃1

∂x2
(x; π) = −(η + 1)η {(η + 1)π − 1} · c · e−1xη−1,

thus H̃1 is a strict concave function in x when π ≥ 1. Let x∗(π) be the solution of

maxxH1(x; π) subject to 0 ≤ x ≤ 1. Then, when π ≥ 1, from the �rst order condition,

we can derive that

x∗(Π) =

[
η(π − 1)

(η + 1){(η + 1)π − 1}e−1

] 1
η

.16 (OA.1.5)

Now de�ne

h(π) ≡ H̃1(x∗(π);π) = K

(
π − 1

(η + 1)π − 1

) 1
η

(π − 1) · c− (1− η) · c

where K = η2

η+1

(
ηe
η+1

) 1
η
. Observe that

h

(
2

η + 1

)
=(1− η)c

[
η2

(η + 1)2

(
η(1− η)e

(η + 1)2

) 1
η

− 1

]
< 0

from η < 1 and η(1− η)e ≤ e
4
< 1 ≤ (η + 1)2. In addition, lim

π→∞
h(π) =∞ and

h′(π) =
Kπ(1 + η)c

π − 1
·
(

π − 1

(η + 1)π − 1

) 1
η

+1

> 0.

Therefore, there exists a unique π such that h(π) = 0 and π ≥ 2/(η+ 1), and we denote this

16When π ≤ (η+1)e−1−η
(η+1)2e−1−η , the solution of the maximization problem max0≤x≤1H1(x;π) is x∗(π) = 1.

However, we can show that (η+1)e−1−η
(η+1)2e−1−η < 1 for any 0 < η, which implies that we can focus on the interior

solution when π ≥ 1.
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solution by π̃M(η). Also note that when η = 1, h(2/(η + 1)) = h(1) = 0 thus π̃M(1) = 1.

(a) Suppose that 1 ≤ π < π̃M(η). We have 0 > h(π) = H̃1(x∗(π); π) ≥ H̃1(x; π) for all

0 ≤ x ≤ 1. It is equivalent to V B ′(u) > V AB ′(u|u) for all u ≥ 0 in this case.

(b) First, suppose that η ≤ 1/(e− 1) and π > π̃M(η). Then, we have 0 < h(π) =

H̃1(x∗(π); π). In addition, by Lemma OA.2, we have H̃1(1;π) = φ(V AB ′(0|0)−V B ′(0)) <

0. Then, by concavity of H̃1 w.r.t. x and ∂H̃1

∂x
(x∗(π); π) = 0, there exists x1 ∈ (x∗(π), 1]

such that H̃1(x1; π) = 0, ∂H̃1

∂x
(x1; π) < 0 and H̃1(x; π) < 0 for all x ∈ (x1, 1]. By

de�ning û1 ≡ −(φ/λB) log x1, the above conditions can be translated into: V B ′(û1) =

V AB ′(û1|û1), V B ′′(û1) < V AB ′′(û1|û1) and V B ′(u) > V AB ′(u|u) for all u ∈ [0, û1).

Next, suppose that η > 1/(e− 1). Note that by the de�nition of π̃A(η), if π ≥ π̃A(η),

H̃1(1; π) ≥ 0. It implies that h(π) ≥ H̃1(1;π) ≥ 0 and π ≥ π̃M(η). Therefore, we

can see that π̃A(η) ≥ π̃M(η). If π̃A(η) ≥ π > π̃M(η), we also have H̃1(x∗(π); π) > 0 >

H̃1(1; π). By using the same arguments as above, we can show that there exists û1 > 0

such that V B ′(û1) = V AB ′(û1|û1), V B ′′(û1) < V AB ′′(û1|û1) and V B ′(u) > V AB ′(u|u)

for all u ∈ [0, û1).

The following lemma shows that when there is an e�ciency loss from training and the

training path is employed, there will be an additional switching point, û2.

Lemma OA.4. Suppose that η < 1, Π > c/λB and one of the followings hold: (i) V B ′(û1) <

V AB ′(û1|û1); (ii) V B ′(û1) = V AB ′(û1|û1) and V B ′′(û1) < V AB ′′(û1|û1). Then, there exists

û2 > û1 such that V AB ′(û2|û1) = V BAB ′(û2|û1, û2) and V AB ′′(û2|û1) < V BAB ′′(û2|û1, û2) and

such û2 is unique. Moreover, V AB ′(u|û1) > V BAB ′(u|û1, u) for all u ∈ (û1, û2).
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Proof of Lemma OA.4. Using (OA.1.2), (B.7) and V BAB(u|û1, u) = V AB(u|û1), φV BAB ′(u|û1, u)−

φV AB ′(u|û1) can be rewritten as follows:

λBΠ− λA {VM(u+ φ/λA) + u+ φ/λA}+ (λA − λB)(V AB(u|û1) + u).

By performing a similar derivation as in (A.12) and using η = λA
λB
− 1 and y ≡ e−

λA
φ

(u−û1),

the above expression can be further rewritten as follows:

H̃2(y) ≡ 1− η
1 + η

c+ (λAΠ− c)e−1−λA
φ
û1

[
1 +

η

1 + η
log y

]
y

+η

[
1− η
1 + η

c− (λBΠ− c)e−
λB
φ
û1

]
y.

(OA.1.6)

Note that H̃2(1) = φV BAB ′(û1|û1, û1) − φV AB ′(û1|û1) = φV B ′(û1) − φV AB ′(û1|û1) ≤ 0

by assumption. By di�erentiating H̃2 twice, we have

H̃ ′′2 (y) =
η

1 + η
(λAΠ− c)e−1−λA

φ
û1 1

y
> 0.

Since Π > c
λB

> c
λA
, H̃2 is strictly convex in y. Also note that

lim
y→0

H̃2(y) =
1− η
1 + η

c > 0.

By the convexity of H̃2, there exists y2 ∈ (0, 1) such that (i) H̃2(y) < 0 for all y ∈ (y2, 1), (ii)

H̃2(y2) = 0, and (iii) H̃ ′2(y2) < 0. Let û2 = û1 − φ
λA

log y2. Then, from (i) and (ii), we have

V AB ′(u|û1) > V BAB ′(u|û1, u) for all u ∈ (û1, û2) and V AB ′(û2|û1) = V BAB ′(û2|û1, û2). Addi-

tionally, since y is decreasing in u, H̃ ′2(y2) < 0 implies that V AB ′′(û2|û1) < V BAB ′′(û2|û1, û2).

Next, when there is a switching point û2, the following lemma shows that the execution

path is employed for all u > û2.
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Lemma OA.5. Suppose that π > 1, V AB ′(û2|û1) = V BAB ′(û2|û1, û2) and V AB ′′(û2|û1) <

V BAB ′′(û2|û1, û2). Then, λA
(
VM(u+ φ/λA)− V BAB(u|û1, û2)

)
− φV BAB ′(u|û1, û2) − c < 0

for all u > û2.

Proof of Lemma OA.5. By di�erentiating (B.6) and (B.7), we have

φV AB ′′(u|û1) = λA (V ′M (u+ φ/λA) + 1)− λA
(
V AB ′(u|û1) + 1

)
,

φV BAB ′′(u|û1, û2) = −λB
(
V BAB ′(u|û1, û2) + 1

)
.

Then, V AB ′(û2|û1) = V BAB ′(û2|û1, û2) and V AB ′′(û2|û1) < V BAB ′′(û2|û1, û2) imply that

(λA − λB)(1 + V AB ′(û2|û1)) > λA(V ′M(û2 + φ/λA) + 1)

⇐⇒ η(1 + V AB ′(û2|û1)) > (η + 1)

(
λAΠ− c

φ

)
e−

λA
φ
û2−1. (OA.1.7)

De�ne a function H3 : [û2,∞)→ R as

H3(u) ≡ λA
[
VM(u+ φ/λA)− V BAB(u|û1, û2)

]
− φV BAB ′(u|û1, û2)− c.

With some algebra, we can derive that

H3(u) = (η − 1) c− (λAΠ− c)e−
λA
φ
û2−1 · e

λA
φ

(û2−u) + ηφ
(
V AB ′(û2|û1) + 1

)
e
λB
φ

(û2−u).

Also note that

H3(û2) = λA
[
VM(û2 + φ/λA)− V AB(û2|û1)

]
− c− φV BAB ′(û2|û1, û2)

= φV AB ′(û2|û1)− φV BAB ′(û2|û1, û2) = 0.

9



De�ne x ≡ e
λB
φ

(û2−u). Then, H3(u) can be rewritten as follows:

H̃3(x) = (η − 1)c− (λAΠ− c)e−
λA
φ
û2−1xη+1 + ηφ

(
V AB ′(û2|û1) + 1

)
x

and H̃3(1) = H3(û2) = 0.

Note that

H̃ ′3(x) = −(η + 1)(λAΠ− c)e−
λA
φ
û2−1xη + ηφ

(
V AB ′(û2|û1) + 1

)
.

By (OA.1.7), we can derive that

H̃ ′3(1) = −(η + 1)(λAΠ− c)e−
λA
φ
û2−1 + ηφ

(
V AB ′(û2|û1) + 1

)
> 0.

Also note that

H̃ ′′3 (x) = −(η + 1)η(λAΠ− c)e−
λA
φ
û2−1xη−1 < 0.

Therefore, H̃ ′3(x) > 0 for all 0 < x < 1. Since H̃3(1) = 0, H̃3(x) < 0 for all x ∈ (0, 1). Thus,

λA
(
VM(u+ φ/λA)− V BAB(u|û1, û2)

)
− φV BAB ′(u|û1, û2)− c < 0 for all u ≥ û2.

Lastly, we show that the resulting value function is concave, and that LB and LA�the

functions specifying deviations, de�ned in (B.13) and (B.14)�are nonpositive.

Lemma OA.6. Suppose that π > 1 and η < 1.

(a) V is concave;

(b) for any u ≥ 0, LB(u,R) ≤ 0 for all R ≥ u + φ/λB, and L
A(u,w) ≤ 0 for all w ≥

u+ φ/λA.

Proof of Lemma OA.6. (a) When u < û1, V ′′(u) = V B ′′(u) < 0 from Lemma 8 (c).
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When û1 < u < û2, the inequality (B.12) is still applicable, and from λA < 2λB, we

have V ′′(u) = V AB ′′(u|û1) ≤ 0.

When u > û2, by di�erentiating (OA.1.1) twice, we have

V BAB ′′(u|û1, û2) = −
(
λB
φ

)2

·
(

Π− c

λB
− (V AB(û2|û1, û2) + û2)

)
e−

λB
φ

(u−û2).

Note that V AB(û2|û1, û2) + û2 cannot exceed the �rst-best expected surplus Π− c/λB,

thus, the above expression is negative.

Since these component functions are smoothly pasted at û1 and û2, the entire value

function is concave.

(b) As in the no e�ciency loss case, V(u) + u is increasing in u, thus, V ′(u) ≥ −1 and it

gives ∂LB

∂R
≤ 0. Thus, it is su�cient to show that LB(u, u + φ/λB) ≤ 0 for all u ≥ 0.

Observe that from (B.6), (B.7) and (OA.1.2), we have

LB(u, u+ φ/λB) =


0, if u ≤ û1 or u ≥ û2,

φV BAB ′(u|û1, u)− φV AB ′(u|û1), if u ∈ (û1, û2).

Since û1 and û2 are chosen to satisfy V BAB ′(u|û1, u) < V AB ′(u|û1) for all u ∈ (û1, û2),

LB is always nonpositive.

Likewise, from the concavity of V , ∂LA
∂u
≥ 0. Thus, it is su�cient to show that LA(u, u+

φ/λA) ≤ 0 for all u ≥ 0. Then, we have

LA(u, u+ φ/λA) =



φV AB ′(u|u)− φV B ′(u), if u ≤ û1,

0, if u ∈ (û1, û2),

λA(VM(u+ φ/λA)− V BAB(u|û1, û2))

−c− φV BAB ′(u|û1, û2),

if u ≥ û2.
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By Lemma OA.3 and Lemma OA.5, LA is always nonpositive.

Now we prove Proposition 4.

Proof of Proposition 4. We start by showing that, for each condition in (b) and (c), the

switching points are as stated and the conditions in (a) also hold.

(b-i & c-i) By Lemma OA.3 (a), V B ′(u) > V AB ′(u|u) for all u > 0. Note that V B(u) =

V BAB(u|0, 0) and

φV AB ′(u|u) = λA(VM(u+ φ/λA)− V BAB(u|0, 0))− c

by (B.7) and V AB(u|u) = V B(u). Therefore, with û1 = û2 = 0, the conditions (a-i)�(a-iv)

hold trivially, and the condition (a-v) holds as demonstrated above.

(b-ii & c-ii) By Lemma OA.3 (b), there exists û1 > 0 such that the conditions (a-i) and

(a-ii) hold. Next, by Lemma OA.4, there exists û2 > û1 such that the conditions (a-iii) and

(a-iv) hold. By Lemma OA.5, the condition (a-v) holds.

(c-iii) By Lemma OA.2, V AB ′(0|0) > V B(0). By setting û1 = 0, the conditions (a-i) and

(a-ii) hold trivially. Next, by Lemma OA.4, there exists û2 > 0 such that the conditions

(a-iii) and (a-iv) hold. By Lemma OA.5, the condition (a-v) holds.

(d) Following the same steps of the proof of Proposition 1, V solves (HJBV ) subject to

(IC).
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OA.2 Proofs of Proposition 2 and Proposition 3

Lemma OA.7. Suppose that π > π̃M(η) and η ≤ c/(c+ φ). Then, û2 is less than ū.

Proof of Lemma OA.7. Since V is strictly concave, û2 < ū is equivalent to 0 < V ′(û2) =

V AB ′(û2|û1) = V BAB ′(û2|û1, û2). Then, 0 < V BAB ′(û2|û1, û2) is equivalent to:

λB(û2 + V AB(û2|û1)) < λBΠ− c− φ. (OA.2.1)

Also note that V BAB ′(û2|û1, û2) = V BAB ′(û2|û1) and V BAB(û2|û1, û2) = V AB(û2|û1) imply

that

λB(Π− û2 − V AB(û2|û1)) = λA (VM (û2 + φ/λA) + û2 + φ/λA)− λA
(
V AB(û2|û1) + û2

)
by (B.6) and (B.7). By plugging (B.1) into the above equation, we can derive that

(λA − λB)(V AB(û2|û1) + û2) =λA

(
Π− c

λA

)(
1− e−

λA
φ
û2−1

)
− λBΠ

⇐⇒ ηλB(V AB(û2|û1) + û2) =ηλBΠ− c− (λAΠ− c)e−
λA
φ
û2−1.

Then, by plugging this into (OA.2.1), 0 < V BAB ′(û2|û1, û2) is equivalent to

η(c+ φ)− c < (λAΠ− c)e−
λA
φ
û2−1.

Since Π > c/λB > c/λA, the right hand side of the above inequality is always greater

than 0. Since it is assumed that η ≤ c/(c+ φ), the left hand side of the above inequality is

always less than or equal to 0. Therefore, the above inequality always holds, i.e., û2 is less

than ū.
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Lemma OA.8. Suppose that η > η = max{1/(e− 1),
√
c/(c+ φ)}. There exists π̃B(η) ∈

(π̃M(η), π̃A(η)) such that û1 < u if and only if π > π̃B(η).

Proof of Lemma OA.8. From η > 1/(e− 1), π̃A(η) exists. Suppose that π ≥ π̃A(η). By

Lemma OA.2, û1 = 0. Note that

π̃A(η) =
e− 1

(e− 1)η − 1
≥ e− 1

e− 2
> 2 ≥ c+ φ

c
= πF .

Then, the project is feasible and ū is greater than 0, i.e., ū > û1.

Now suppose that πM(η) < π < πA(η). Since V is strictly concave, û1 < ū is equivalent

to 0 < V ′(û1) = V B ′(û1). Note that 0 < V B ′(û1) is equivalent to:

φ

λBΠ− c
< e−

λB
φ
û1 = x̂1. (OA.2.2)

Recall that x̂1 is a solution where H̃1(x), as de�ned in (OA.1.4), equals zero. Additionally,

πM(η) < π < πA(η) implies that H̃1(1) < 0 < H̃1(x∗) where x∗ is de�ned in (OA.1.5).17

There are two possible cases that satisfy (OA.2.2): (i) x∗ ≥ φ
λBΠ−c ; (ii)

φ
λBΠ−c > x∗ and

H̃1( φ
λBΠ−c) < 0.

The �rst case is equivalent to H̃ ′1( φ
λBΠ−c) < 0. By algebra, we can show that it is

equivalent to

(η + 1)π − 1

(π − 1)η+1
<

ηe

η + 1
φ−ηcη. (OA.2.3)

The second case is equivalent to H̃ ′1( φ
λBΠ−c) ≥ 0 and H̃1( φ

λBΠ−c) < 0. By algebra, we can

show that it is equivalent to

ηe

η + 1
φ−ηcη ≤ (η + 1)π − 1

(π − 1)η+1
< (η(c+ φ)− c) eφ−η−1cη. (OA.2.4)

17For simplicity, Π is omitted from the de�nition of H̃1 and x∗.
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Last, by the proof of Lemma OA.3, we can show that π > πM(η) is equivalent to

(η + 1)π − 1

(π − 1)η+1
<

(
η2

1− η2

)η
ηe

1 + η
. (OA.2.5)

Now we compare the above three conditions. Using η >
√
c/(c+ φ), by simple algebra,

we can show that

ηe

η + 1
φ−ηcη < (η(c+ φ)− c)eφ−η−1cη <

(
η2

1− η2

)η
ηe

1 + η
.

Therefore, the inequality

(η + 1)π − 1

(π − 1)η+1
< (η(c+ φ)− c) eφ−η−1cη

imply that (OA.2.3), (OA.2.4) and (OA.2.5). De�ne πB(η) be the value of π that makes both

sides of the above inequality equal. Then, πB(η) > πM(η) since π < πM(η) implies π < πB(η).

Therefore, there exists πB(η) > πM(η) such that û1 < ū if and only if π > πB(η).

Lemma OA.9. Suppose that η > η =
√
c/(c+ φ). Then, û2 ≥ u.

Proof of Lemma OA.9. By following the proof of Lemma OA.7, û2 ≥ ū is equivalent to

y ≡ (η − 1)c+ ηφ

(λAΠ− c)e−
λA
φ
û1−1

≥ e
λA
φ

(û1−û2) = ŷ2 (OA.2.6)

By the proof of Lemma OA.4, ŷ2 is the solution, which is not equal to 1, of H̃2(y) = 0.18

Since û2 ≥ û1, if y ≥ 1, the above inequality holds, thus, we restrict attention to the case of

y < 1. Observe that the inequality H̃2(y) ≤ 0 implies (OA.2.6) because H̃2 is strictly convex

in y and H̃2(1) ≤ 0.

18The function H̃2 is de�ned in (OA.1.6).
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Using the de�nition of H̃1 in (OA.1.4) and x̂1 ≡ e−
λB
φ
û1 , H̃2(y) can be rewritten as follows:

H̃2(y) =
1− η
1 + η

c− H̃1(x̂1)y +

[
−1− η

1 + η
c+

η

1 + η
(λAΠ− c)e−

λA
φ
û1−1 log y

]
y.

Also note that x̂1 is chosen to satisfy H̃1(x̂1) being greater than equal to zero.

By plugging the de�nition of y into the above equation, we can derive that

H̃2(y) =
1− η
1 + η

c(1− y)− H̃1(x̂1)y +
η

1 + η
((η − 1)c+ ηφ) log y.

Now de�ne a new function G as follows:

G(y) ≡ 1− η
1 + η

c(1− y)− H̃1(x̂1)y +
η

1 + η
((η − 1)c+ ηφ) log y,

and it is enough to show that G(y) ≤ 0 for all y < 1.

Note that

G′′(y) = − η

1 + η

(
(η − 1)c+ ηφ

y2

)
< 0

from η ≥
√
c/(c+ φ) > c/(c+ φ). Also note that

G′(1) = −H̃1(x̂1) +
1

1 + η

(
(η2 − 1)c+ η2φ

)
< 0.

from η ≥
√
c/(c+ φ) and H̃1(x̂1) ≥ 0. Lastly, note that G(1) = −H̃1(x̂1) ≤ 0. Therefore,

for all y < 1, G(y) ≤ G(1) +G′(1)(1− y) ≤ 0. Therefore, H̃2(y) ≤ 0 and u2 ≥ ū.

Now we prove Proposition 2 and Proposition 3.

Proof of Proposition 2. Note that û2 is always greater than ū by Lemma OA.9 since η >
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√
c/(c+ φ). Additionally, using Lemma OA.2, Lemma OA.3 and Lemma OA.8, we have

V(u) =


V B(u), if πF < π < π̃B(η),

V AB(u|û1), if π̃B(η) < π < π̃A(η),

V AB(u|0), if π̃A(η) < π.

As in Theorem 2, the value functions above can be implemented by execution-only, one-

switch and training-only contracts, respectively.

Proof of Proposition 3. By Proposition 4 (b-i), when π ≤ π̃M(η), û1 = û2 = 0. By Proposi-

tion 4 (b-ii) and Lemma OA.7, when π > π̃M(η), u > û2 > û1 > 0. Therefore,

V(u) =


V BAB(u|0, 0) = V B(u), if πF < π ≤ π̃M(η),

V BAB(u|û1, û2), if π̃M(η) < π.

By Lemma OA.1, (V BAB(u|û1, û2), u) can be implemented by a two-switch contract. There-

fore, when π ∈ (πF , π̃M(η)], the execution-only contract is optimal, and when π > π̃M(η),

there exists a two-switch contract that is optimal.
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