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Abstract

We study a principal-agent problem where the principal dynamically chooses be-
tween two methods for solving a problem: a direct execution route and a multi-stage
training route with an observable milestone. To mitigate moral hazard, the principal
commits to an endogenously determined deadline. The optimal contract is shaped by
the interplay of three forces: the milestone effect from the training route’s monitor-
ing advantage, the deadline effect that favors the simpler execution route as time runs

short, and the relative efficiency of each path.
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1 Introduction

In managing complex projects, a central challenge is choosing the best methodology. A
manager must often decide between pursuing a direct, single-stage approach using existing
capabilities and adopting a more complex, multi-stage strategy that first requires developing
a specialized skill. This tradeoff recurs in many settings. A software company might rely on
its existing codebase to build a product, or it could first train its team on a new programming
language tailored to the project’s requirements. Similarly, a graduate student writing a
dissertation might draw only on the training from their first- and second-year courses, or they
might first build new competencies through additional coursework outside their department.

Perhaps most consequentially, this tradeoff was at the heart of the race to develop
COVID-19 vaccines. Some ventures—Oxford-AstraZeneca, Johnson & Johnson, and No-
vavax—pursued established approaches such as viral-vector and protein-subunit methods.
By contrast, Pfizer-BioNTech and Moderna-NIAID took the novel route of developing an
mRNA platform, a strategy that required mastering the new technology before an actual
vaccine could be produced.

To study this type of trade-off, we develop a model where a principal hires an agent
to solve a problem. At any moment, the principal instructs the agent to pursue one of
two methodologies. She can recommend the execution route, a direct path where the
agent applies a basic skill to solve the problem, with success modeled as a Poisson arrival.
Alternatively, she can recommend the training route, an indirect, two-stage path. On this
route, the agent must first acquire an advanced skill before using it to solve the problem;
both the initial skill acquisition and the final solution are also governed by Poisson processes.

A crucial feature of the training route is that the acquisition of the advanced skill is
a publicly observable milestone, providing a clear signal of progress. This assumption is
grounded in practice, where such preparatory stages often conclude with verifiable outcomes,
such as obtaining a professional certification, completing a required training program, or a

successful prototype demonstration.



The choice of methodology is complicated by a classic moral hazard problem. The solution
or skill acquisition only occurs if the agent exerts effort, which is his private information.
If the agent shirks, he enjoys a private benefit, and the principal’s ability to counteract
this is limited by the agent’s limited liability, which restricts her to offering non-negative
rewards. These frictions make deadlines essential for providing incentives; without one, the
agent could shirk indefinitely. Therefore, the principal must impose a deadline, which is
endogenously determined as part of the optimal contract.

The principal’s optimal strategy is governed by the interplay of three competing economic
forces. The first is the milestone effect, where the observable progress in the training route
provides a monitoring advantage that allows for deadline extensions. This is weighed against
the deadline effect, which makes the single-stage execution route more appealing as time
runs short, since a single breakthrough is more probable than the two breakthroughs required
for the training route. The final force is efficiency, defined by the expected time required
to solve the problem. To isolate the core tensions, we first analyze a benchmark where
both routes are equally efficient (i.e., have the same expected completion time) and later
introduce the possibility that the execution route is more efficient (i.e., has a shorter expected
completion time), creating a further trade-off against the training route’s monitoring benefits.

Focusing on the case where the execution and training routes are equally efficient, we
find that the optimal contract depends critically on the project return—the gross value of
the solution relative to the operating cost (Theorem 2). When the project return is low,
the optimal deadline is short, and the principal opts exclusively for the execution path.
Conversely, when the project return is high, the benefit of monitoring the agent’s progress
becomes crucial, causing the milestone effect to dominate the deadline effect; thus, the
principal always recommends the training route. For projects with intermediate returns,
the optimal contract involves a switch in strategy: the principal initially recommends the
training path but instructs the agent to switch to the execution path if the advanced skill is

not acquired and the deadline becomes imminent.



We then introduce an efficiency loss from training, reflecting scenarios where its multi-
stage nature may be slower than the more direct execution route. When this efficiency loss is
small, our previous characterization remains robust; the optimal contract is still determined
by low, intermediate, or high values of the project return (Proposition 2). However, when
the efficiency loss is large, the trade-offs become sharper. The execution route’s efficiency
advantage makes it the preferred choice not only near the deadline but also at the beginning of
a long project. Consequently, for most project returns, an execution-only contract is optimal.
More interestingly, for very high-return projects, a novel two-switch contract emerges where
all three economic forces shape the outcome: the principal begins with the execution route
(due to efficiency), switches to the training route in the middle of the contract to leverage
the milestone effect for monitoring, and finally reverts to the execution route as the deadline
looms (Proposition 3).

Our findings align with observed differences in the structure of applied and basic scientific
research. Applied research, such as developing a new drug or conducting clinical trials, is
typically structured in stages with clear milestones. This corresponds to the training route in
our model, which we find is optimal for high-return projects—a fitting description for applied
research where the potential payoff is large relative to the operating cost. In contrast, basic
research is often pursued “without thought of practical ends” (Bush, 1945), and thus has

L' This prediction is consistent with funding mechanisms

a lower immediate project return.
like the National Institutes of Health’s R01 grant, which supports “a discrete, specified,

circumscribed project” rather than a staged one.?

Related Literature There is a growing literature on contracting for multi-stage projects,

e.g., Hu (2014); Green and Taylor (2016a); Wolf (2018); Moroni (2022). The most closely

!Bush argues that although broad and basic studies seem to be less important than applied ones, they
are essential to combat diseases because progress in the treatment “will be made as the result of fundamental
discoveries in subjects unrelated to those diseases, and perhaps entirely unexpected by the investigator."
However, since this article does not consider externalities, we abstract from this possibility and focus on the
principal’s return from the completed project.

’https://grants.nih.gov/grants/funding/r01.htm
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related study is Green and Taylor (2016a), who study a model in which multiple break-
throughs are needed to complete a project and in which an agent must be incentivized to
exert unobservable effort. The training route considered here comprises the baseline model
with the tangible breakthrough in the working paper version of their paper (Green and Tay-
lor, 2016b). However, the option to complete the project directly, which is not considered in
their setup, allows the principal to face a choice problem between the two routes. Moreover,
this choice problem arises at every point in time. Therefore, the principal’s problem is more
complex from a dynamic perspective.

A related article is Carnehl and Schneider (2023), where they explore a two-armed ban-
dit problem with one arm requiring a single breakthrough and the other needing multiple
breakthroughs. The agent knows the arrival rates for the latter but must infer the feasibility
of the former through experimentation—a key difference between their paper and this one.
Unlike their focus on a single-agent decision problem with an exogenous deadline, this paper
addresses principal-agent contracting with an endogenously determined deadline. Despite
these differences, we share a common insight in that the chosen approaches may switch up
to two times.

This investigation is also related to the literature on monitoring in dynamic contracts,
e.g., Orlov (2022); Piskorski and Westerfield (2016); Dilmé and Garrett (2019); Marinovic and
Szydlowski (2022); Varas et al. (2020); Marinovic and Szydlowski (2023); Chen et al. (2020);
Wong (2023). In most of these papers, a monitoring process provides some information on
the agent’s current or past action. In this sense, the completion of the first breakthrough
(advanced skill acquisition) in the training route can be considered as a monitoring device
since it lets the principal know that the agent has worked. However, the skill acquisition
gives more information than merely the agent’s past actions. Before the skill acquisition, the
success requires one relatively hard breakthrough or two easier breakthroughs. After skill
acquisition, it requires only one relatively easy breakthrough. Thus, the skill acquisition is

distinguished from standard monitoring processes since it also provides information about



the subsequent likelihood of success.

This work is also relevant to the literature studying complementary innovations, e.g.,
Green and Scotchmer (1995); Gilbert and Katz (2011); Bryan and Lemus (2017); Poggi
(2021). Two subprojects in the sequential approach can be considered as ‘perfect’ comple-
ments in the sense that completing one task in the training route does not create any value
but completing both of them does. The most relevant paper in this line is Kim and Poggi
(2025), which introduces an innovation race model with two R&D routes: one requiring a
single breakthrough (direct development) and the other requiring two breakthroughs (re-
search and development). However, to our knowledge, most studies in this literature focus
on the problems involving competing firms or a single decision maker, whereas this article

addresses an agency problem.

2 Model

A principal (she) hires an agent (he) to complete a project, specifically, to solve a problem.
Problem-solving takes place in continuous time and can be performed in general over an
infinite horizon: ¢ € [0, 00). When the problem is solved, the principal realizes a gross payoff
IT > 0, and the game ends. The principal incurs an operating flow cost of ¢ > 0 per unit
of time until the problem is solved or the project is terminated. The principal is assumed
to have an infinite amount of resources to fund the project, while the agent is protected by
limited liability; that is, the principal can only transfer nonnegative rewards to the agent.?
The principal and the agent are both risk-neutral and patient, i.e., they do not discount the
future. Both players have outside options of zero.

At each point in time, the principal directs an agent to exert effort on one of two problem-
solving methodologies, the erecution route or the training route. The agent’s hidden action

is denoted by 3, € {0,1}, where 3; = 1 represents effort and §; = 0 represents shirking. If

3See Remark 1 for further discussion of limited liability.
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Figure 1: Problem-Solving Routes

the agent shirks, he receives a private flow benefit ¢. We assume ¢ > ¢ > 0, i.e., the private
benefit from shirking does not exceed the principal’s operating cost.

The execution route is a direct path where the agent applies an existing basic skill to
solve the problem. When this route is taken at time ¢, the problem is solved at a Poisson
rate of Agf;. The training route is a two-stage path where the agent must first acquire an
advanced skill before using it to solve the problem. The acquisition of this skill is a publicly
observable milestone. Under this route, both the initial skill acquisition and the subsequent
problem-solving solution arrive at the same Poisson rate of A43;. These paths are illustrated

in Figure 1.

3 Benchmarks

Before deriving the optimal contract under asymmetric information, we explore two bench-
mark scenarios under which a social planner (it) chooses the best route for solving the
problem without relying on an agent. We begin with the unconstrained first-best setting

and then explore the presence of exogenous deadlines.

4The subscripts A and B stand for advanced and basic skills, respectively.



3.1 The First-best and Parametric Assumptions

Suppose the social planner is able to solve the problem on its own. If the planner employs
the execution route, the expected amount of time until the problem is solved is 1/Ag. So its
expected payoff from this route is IT — ¢/Ag. On the other hand, the training route requires
two breakthroughs, each with expected duration of 1/A4. So the planner’s expected payoff
from this route is IT — 2¢/A 4. For the main analysis, we focus on the case where both routes
are equally efficient: 2Ag = A 4. In Section 5, we explore the case where the execution route
is more efficient than the training route: 2\g > \4.°
We also assume that the project is profitable enough to be undertaken under the execution
route:
c Apll

II > — <— =
)\B m C

> 1, (3.1)

where 7 denotes the project return.

3.2 Planner’s Problem with Exogenous Deadlines

As an intermediate step toward characterizing the optimal contract under an infinite horizon,
we next consider a setting where the social planner that operates the project itself faces
exogenous deadlines. These deadlines generate inefficiencies, because if the project is worth
starting (i.e., if (3.1) holds), then it should be run until the problem is solved. This analysis,
which is somewhat involved, is important for understanding elements of the optimal contract
in the presence of agency considerations and is also of independent interest, given the ubiquity
of deadlines.

Assume that the project is exogenously terminated when time passes a deadline T'. Ad-

ditionally, the deadline is extended by A > 0 if the advanced skill is acquired before 7.5 In

SIf the training route were sufficiently more efficient than the execution route, the principal would rely
exclusively on training. This would yield results similar to the tangible breakthrough case in Green and
Taylor (2016b). To distinguish the analysis from that work, we focus on the parametric regions where there
is tension between choosing two paths.

6Note that A = 0 is permitted. Also, it is possible to consider the case of A < 0, but we show that under



other words, the planner faces two deadlines: the original deadline 7" under no skill acquisi-
tion, and the extended deadline 7'+ A upon acquisition of the advanced skill. Given these
deadlines, the planner chooses which route (direct or training) to take at each point in time.

We begin by introducing a benchmark policy where it is optimal for the planner to
initially employ the training route and later switch to the execution route if the advanced

skill is not acquired.

Definition 1. A policy is called a one-switch policy if there exists an intermediate deadline
S € [0, 7] such that (i) the planner chooses training up to S (a; = 0 for t < S), (ii) if the
advanced skill is acquired before S, the planner tries to solve the problem with the advanced
skill until the extended deadline 7'+ A, and (iii) if the advanced skill is not acquired by S,

the planner switches to execution until the deadline T'.

This class of policies includes two extreme cases. A one-switch policy with .S = 0 does not
involve any training, and is referred to as the ezecution-only policy. Conversely, a one-switch
policy with S = T does not involve any execution (with the basic skill), and is referred to
as the training-only policy.

The following theorem shows that the optimal policy takes the form of a one-switch

policy.

Theorem 1. Suppose that the two routes are equally efficient (A4 = 2Ap). When the
planner faces the deadline T and the extension A resulting from the skill acquisition, the

optimal policy is characterized as follows:

(a) (Long extension) if A > A = ﬁ log [2;__11], the training-only policy is optimal;

(b) (Short extension) if A < A, there exists T > 0 such that

(i) when T < T, the execution-only policy is optimal;

(i1) when T > T, the one-switch policy with the intermediate deadline T—T is optimal.

agency it is optimal to extend—not reduce-the deadline when the agent acquires the advanced skill.



This theorem implies that the basic skill is never used when the deadline extension is
sufficiently long. On the other hand, when the deadline extension is relatively short, there
exists a time 7' such that the basic skill begins to be used when fewer than T units of time

remain.

Execution-only vs. training-only policies To provide intuition for Theorem 1, we
compare the probability that the problem is solved by the deadline—namely, the solution
probability—under the training-only policy (A) and the execution-only policy (B).

When the planner adopts the execution policy, the solution probability is
T
PB(T) = / Ap e Mmdr =1 — e 8T (3.2)
0

where 7 is the date on which the problem is solved.

Next, when the planner employs the training-only policy, the solution probability is

T T+A
PAT,A) = / [/ Age AT qr L\ e Mo dr,
0 Ts

=1— (14 Xy -T-e 8. gl (3.3)

where 7, is the date on which the advanced skill is acquired.
Next we compare the solution probabilities across policies when there is no deadline
extension (A = 0). The following lemma shows that PZ(T,0) and P4(T,0) cross once as T

increases. The proof is in Appendix A.2.

Lemma 1. Suppose that Ay > Ap and A = 0. There exists T such that PP(T,0) > PA(T,0)
for all T < T and PA(T,0) > PE(T,0) for all T > T.

Notably, under the execution-only policy, the planner needs only one breakthrough,
whereas the training-only policy requires two, which is challenging within a short time-

frame. Therefore, when the deadline is short (7" < T), the solution probability under the

10
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Figure 2: Solving Probabilities (A4 =2, Ag =1, I =3, ¢ =1)

execution-only policy is higher than that under the training-only policy. On the other hand,
when the deadline is relatively long (7' > T ), achieving two faster breakthroughs can be
easier than achieving one slower breakthrough. In this case, the training-only policy has a
higher chance to solve the problem than the execution-only policy. We call this dynamic the
‘deadline effect.’

Next, observe that the deadline extension provides additional benefits to the training-
only policy: PA(T,A) increases as A increases. We refer to this as the ‘milestone effect’
because this increase in the solution probability occurs due to the planner’s ability to exploit
intermediate progress under the training route.

Based on the deadline and milestone effects, we can infer that the execution-only pol-
icy has a higher solution probability than the training-only policy when both the original
deadline and the deadline extension are short. Figure 2 illustrates this. The horizontal axis
represents the deadline 7. With the long deadline extension, as depicted in Figure 2a, the
training-only policy always has higher solution probability—the milestone effect outweighs
the deadline effect. When the extension is short, as depicted in Figure 2b, the execution-only
policy has higher solution probability with short deadlines, whereas the training-only policy
has higher solution probabilities with long deadlines.

These effects also play crucial roles in comparing expected surpluses between the two

policies: the execution-only policy can achieve higher expected surplus only when both the

11



deadline and the extension are short. This discussion suggests that the one-switch policy—
employing (i) the training route when the deadline is distant and (ii) the execution route
when the deadline is nigh—is likely to be optimal. Theorem 1 confirms that this is indeed

the case.

Comparative statics of the extension cutoff Theorem 1 shows that there exists a
cutoff for the deadline extension, A, such that the training-only policy is optimal if the
extension is longer than the cutoff; otherwise, the basic skill is employed near the deadline.

Observe that

OA 1 2 11 1 “0
or Aa|2r—1 w—1| ’

from (3.1). This establishes the following lemma.

Lemma 2. Suppose that Ay = 2\g and ™ > 1. The estension cutoff A decreases in the

project return .

As the project return increases, the solution probability becomes more important because
it is multiplied by 7 in the expected surplus. This favors the training route, which has a
higher solution probability when the deadline is sufficiently long. Consequently, the cutoff

A decreases as ™ grows.

4 Agency

4.1 The Necessity of Deadlines

We now return to the contracting problem in which the principal must provide incentives for
the agent to solve the problem for her. Note that the first-best outcome cannot be achieved

under asymmetric information and limited liability because, without deadlines, the agent

12



would shirk without detection forever and generate an infinite private benefit. Hence, an
optimal contract must involve deadlines of some kind, trading off their inherent inefficiency

with payment of agency rents.

Remark 1. As is well-known, the principal can generally implement the first-best outcome
in moral-hazard settings unless the agent has limited liability or is risk-averse. This is
accomplished in general by selling the agent the project upfront for a price equal to its
first-best value; here P = Il — max {2¢/\4, ¢/Ap}. Limited liability implies that the agent
lacks the resources to make such an upfront payment, necessitating the use of contractual

deadlines to control rents.

4.2 Contracts

At the beginning of the game, the principal offers a contract to the agent and fully commits
to all contractual terms. If the agent rejects the offer, the principal and the agent receive
payoffs of zero. Note that if the agent has neither solved the problem nor acquired the
advanced skill, calendar time is the only relevant variable summarizing the public history.
We focus on contracts where the agent is always recommended to work; this is without loss of
generality, as the principal’s operating cost exceeds the agent’s private benefit from shirking.

A (deterministic) contract is denoted by I' = {T, {as, Ry, ft}ogtST}, where each variable

is defined at calendar time ¢ as follows:”

1. T € R,: the deadline date at which the project is terminated absent the solution or

skill acquisition.

2. a; € {0,1}: the principal’s recommendation of a route at ¢t where a, = 1 represents ex-
ecution (i.e., solving with the basic skill) and a; = 0 represents training (i.e., acquiring

the advanced skill);®

"We show that deterministic contracts are optimal. See Remark 2 for a discussion.
8The agent will follow the recommended route because arrival of the skill at ¢ when a; = 1 or arrival of
the solution at ¢t when a; = 0 results in termination without payment.

13



3. R, > 0: the monetary payment from the principal to the agent for the solution at ¢;
4. T = {T* {R'}4<s<q}: an updated contract when the advanced skill is acquired at t;

(a) T* > t: the deadline date at which the project is terminated;

(b) R! > 0: the monetary payment from the principal to the agent for the solution

at time s.

4.3 The Optimal Contract

In this subsection, we characterize the optimal contract in the case where the routes are
equally efficient. Asin the tangible progress case in the mimeo Green and Taylor (2016b), the
optimal contract can be implemented with three key properties: (i) the contract is terminated
after a deadline; (ii) the reward for the project completion, Ry, linearly diminishes over time;
and (iii) the deadline is extended by 1/A4 upon advanced skill acquisition.'?

Since the contract involves a deadline and an extension upon skill acquisition, Theorem
1 suggests that the optimal choice of approaches over time likely either involve one switch

from the training route to the execution route—or no switch at all. In light of this conjecture,

we define contracts involving the above characteristics as follows.

Definition 2. A contract is called a one-switch contract with a final deadline T and an

intermediate deadline S € (0,7) if
(i) the agent is recommended to acquire the advanced skill (training route) by .S,

(ii) when the advanced skill is acquired before S, the contract is extended by 1/A4 and

the reward upon solution at time ¢ is R = ¢(T —t +2/\a),

9Since both the principal and the agent are risk neutral and do not discount the future, without loss of
generality, all monetary payments to the agent can be backloaded (see, e.g., Ray, 2002). The nonnegativity
of R; is due to limited liability.

19The details of these properties will be addressed in Section 4.5. What distinguishes this work from Green
and Taylor (2016b) is the presence of the two routes for solving the problem and the principal’s choice of
which to recommend at each moment in time.

14



(iii) if the advanced skill is not acquired by S, the agent is recommended to switch and
solve the problem using the basic skill (execution route) by 7" and the reward upon

solution at time t is RZ = ¢(T —t + 1/Ap), and

(iv) the contract is terminated if the problem is not solved by the deadlines (7'4 1/ 4 for
(ii) and T for (iii)).

When S = T, we call the contract a training-only contract, and when S = 0, we call the

contract a ezxecution-only contract.

The following theorem shows that the optimal contract indeed takes one of the above

forms.

Theorem 2. Suppose that the execution and training routes are equally efficient (Aa = 2Ap).
There exist thresholds g, ma and g such that ma > g > mp = 1 4+ ¢/c and the optimal

contract can be implemented as follows:
(a) when > A, a training-only contract is optimal;
(b) when wa > 7 > mwp, there exists a one-switch contract that is optimal;
(¢c) when mp > m > T, an execution-only contract is optimal; and

(d) when m < g, the project is infeasible.

As discussed in Lemma 2, the execution route is preferred when 7 is lower and the training
route is preferred when 7 is higher. The above theorem aligns with that intuition. In the

subsequent subsections, we provide the details of the derivation of this result.

4.4 Promised Utility and Incentive Compatibility

Following the standard approach of the dynamic contract literature, we consider the agent’s

promised utility as a state variable and write a contract recursively (e.g., Spear and Srivas-

15



tava, 1987). For a contract T, let Py(T") and Uy(T") be the expected payoffs of the principal
and the agent at time 0 when the agent works.

The core of the analysis is the derivation of the principal’s value function, denoted by
V' (u), which represents her maximized expected payoff Py(I") subject to the promise-keeping
constraint Up(I") = w and the incentive compatibility condition, which will be delineated
later in this subsection. If a contract I' satisfies Py(I') = V(u) and Uy(I') = u, I is said to
implement a pair of expected payoffs (V(u),u). Once the value function is characterized,

the principal solves

u = argmax V (u). (MP)

u>0
Then, the optimal contract is the contract that implements (V (@), u). In the rest of this

subsection, we describe how to derive the value function V(u).

Promised utility upon skill acquisition We begin by considering the principal’s prob-
lem, given that the advanced skill is acquired at time ¢. Let u}, denote the agent’s promised
utility, which will be considered as a state variable. Since this case requires only one more
breakthrough, it is identical to the single-stage benchmark in Green and Taylor (2016a).
They show that the optimal contract is to impose a deadline ¢t + v, /¢ and a linearly dimin-

ishing reward schedule {Ri}t§5§t+u§w /o Where
— ¢(s —1). (4.1)

The intuition is that when the agent’s promised utility is u},, the principal can incentivize
the agent to work at most u};/¢ units of time. If the principal grants more time without

increasing the agent’s expected utility, then he will prefer to shirk out the clock.

Incentive compatibility conditions Now consider the agent’s problem when the ad-
vanced skill has not been acquired. Suppose that the promised utility is u; at some time

t. Under the execution route, if the agent works for a small interval of time [¢,¢ + dt), the

16



breakthrough occurs and the agent receives the reward R; with a probability Agdt. In this
event, however, he loses the continuation utility, thus, the expected payoff from working is
Ag(R; — uy)dt. On the other hand, if he shirks, his payoff is ¢dt. From this, we can derive

the incentive compatibility constraint under the execution route (a;, = 1):

Rt Z Us + i (ICI)
B
Next, under the training route, the agent is compensated in the form of a jump in
promised utility upon acquiring the advanced skill. Thus, the expected payoff of working for
[t,t 4 dt) is Aa(ul, — ug)dt. Then, the incentive compatibility constraint under the training
route (a; = 0) is

4.5 Value Function Characterization

In this subsection, we characterize the value function of the principal. A natural conjecture is
that the principal’s expected payoff is maximized when the incentive compatibility conditions
bind.'! We outline some key properties of contracts with binding IC conditions, and then

characterize the value function.

Deadline and extension With binding IC conditions, the agent’s promised utilities
should fall at the same rate as the benefit from shirking: du/dt = 4, = —¢, or equiva-
lently, u; = wy — ¢t. If the problem has not been solved by ug/¢, the promised utility is
equal to the agent’s outside option 0, thus, the contract is terminated, or equivalently, the

deadline of the contract is ug/¢.

HSee Remark 3 for a discussion of the binding IC condition.
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When the training route is chosen, to make (ICy) bind, we have

t
t+ M=t —+—=—+—.
¢ o N PV

This implies that upon skill acquisition the updated deadline ¢ + u’;/¢ extends the original
deadline ug/¢ by 1/A4.

Linearly diminishing rewards Let T denote the deadline ug/¢. By using u; = ug— ¢t =
¢(T —t), to make (IC;) bind, the reward for solving the problem at time ¢ via the execution

route is

[0) 1
=u + — = T—t+ —
R = w, py 10) )

which corresponds to RP in Definition 2.

Next, when the skill is acquired at £, to make (ICy) bind, we have u!, = u;+¢/A4. Then,
by (4.1), the reward for solving the problem at time ¢ € [£, T + 1/\4] via the training route
is

¢ ¢

. . 2
Rizuzg—i-x‘f‘x—(Zﬁ(t—t):(b(T—t‘i‘x),

which corresponds to R{! in Definition 2.

Value function Based on the above observations, we surmise that the principal’s value
function under agency is linked to the benchmark planner’s problem with a deadline and its
extension, as explored in the previous section. Let W*(T, A) denote the optimal expected
social surplus under the deadline T" and extension A, derived from the optimal policy in
Theorem 1. Then, when the agent’s promised utility is u, a conjecture for the principal’s
value function is the expected social surplus from the deadline u/¢ and the extension 1/\4,
WH*(u/d,1/X4), net of u.

The following proposition verifies this conjecture, with the proof provided in Appendix
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Proposition 1. The principal’s value function V is characterized as follows:

V(u) =W* (u/d,1/A4) — u. (4.2)

Moreover, V s concave.

A key step in proving this proposition is finding a contract implementing the pair of
the agent’s promised utility, u, and the principal’s expected payoff, V(u). When choosing
a path, the principal’s incentives are perfectly aligned with those of the planner—who faces
the same deadlines as the principal—in that both want to maximize the expected surplus.
Since the planner’s policy with at most one switch is optimal, we show that the principal
can implement the pair using a contract that involves at most one switch with linearly

diminishing rewards (Appendix B.3).

4.6 Proof of Theorem 2

Now that we have characterized the principal’s value function, the next step is to pin down
the optimal initial promised utility level for the agent, @, which is the solution to (MP).
This will establish the starting point of the contract in Figure 3 and determine the deadline
length, @/¢. The key tradeoff derives from the fact that the rents needed to keep the agent
from shirking grow linearly with the deadline, whereas the marginal benefit from extending
the deadline falls because the problem is increasingly likely to be solved before the deadline
is reached.

Recall that the basic skill is never employed when the extension is greater than A (Lemma
1 (a)) and the cutoff is decreasing in 7 (Lemma 2). Let m4 be the solution of A = 1/\4.
Then, for all 7 > 74, the execution route will not be employed, even near the deadline. This
establishes Theorem 2 (a) and is illustrated in Figure 3 (c).

When 7 < 74, Theorem 1 (b) indicates that the optimal approach is switched from the

training route to the execution route when 7 units of time remain. In terms of the promised
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Figure 3: Value functions when routes are equally efficient

utility, the switch happens at u; = qu. Then, the form of the optimal contract depends on
whether @ is greater than 4; or not. For example, the value functions in Figure 3a and 3b
both involve a switching point 4, however, « is greater than u; in Figure 3a and less than
17 in Figure 3b. Thus, the optimal contracts are an execution-only contract in Figure 3a
and a contract with a switch from the training route to the execution route in Figure 3b.
Let g be the threshold for the project return where the optimal promised utility w is equal
to the switching point ;. Then, for any = € (wg,74), the optimal contract will involve a
switch, establishing Theorem 2 (b). Conversely, when 7 < 7, only the execution route will
appear in the optimal contract.

Last, the feasibility of the project depends on whether # is greater than 0 or not. When @
is equal to zero, the principal’s expected payoff is maximized at u = 0, meaning it is optimal
for the principal not to initiate the contract—the project is infeasible. This occurs when the
principal’s flow profit is negative near the deadline 7. Since the promised utility u is close
to zero near the deadline, the reward R is approximately ¢/Ap. Then, the principal’s flow

profit in [T — dt, T] is approximately

¢ B o+
/\Bdt' <H—/\—) —Cdt—)\B <H b\ )dt

B B

Therefore, the project is feasible if and only if 7 = Agll/c is greater than mp = 14 ¢/c. This
makes sense because the principal must pay both the operating cost ¢ and (because incentive

compatibility binds) the shirking benefit ¢ for the potential duration of the contract. We
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show that 75 € (7, m4) (Lemma 10). Then, when 7 € (7p, 7g), the execution-only contract
is optimal (Theorem 2 (c)); and when m < 7p, the project becomes infeasible (Theorem 2
(d)).

Remark 2. A mixture of contracts also generates another contract. For example, a contract
with a soft deadline—randomly terminating the agent after reaching the soft deadline, as in
Green and Taylor (2016a)—can be represented by a mixture of two contracts defined here.
However, a mixed contract cannot improve upon the one characterized above. This follows
because the value function V is concave (Lemma 8 (c)).

Consider a set of contracts {I'; }1<i<, where the agent’s expected utility under I'; is u;,
and the weight is w; with > w; = 1 and Y | w; - u; = u. The principal’s expected payoff
from this mixture is > w; - Py(I';) and the agent’s expected utility is u. By concavity, we
have V(u) > >  w;V(u;). Additionally, V(u;) > Py(T;) holds for all 1 < ¢ < n because
V' (u;) is the principal’s maximized expected profit given that the agent’s expected payoff is
u;. Thus, V(u) is greater than or equal to the expected payoff of the mixed contract. Hence,

any mixed contract cannot improve upon the deterministic contract characterized above.

Remark 3. In Green and Taylor (2016b), there is a parametric region where the incentive
compatibility constraint does not bind. This occurs because the deadline extension set by
binding IC is not long enough to make the probability of two breakthroughs sufficiently
high. In contrast, in this model, when such a situation arises, the principal can switch to the
execution path, which is appealing enough to replace the training path. This ensures that

IC is always binding.

5 Extension: Efficiency Loss from Training

We last consider the case where training generates an efficiency loss, i.e., Ay < 2Ag. This
introduces efficiency as another economic force, alongside milestone and deadline effects,

that shape the optimal contract.
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Figure 4: Value functions when the efficiency loss is small

We define a parameter n = Ag/Ap — 1, which measures the relative efficiency of the
training path. Note that 0 < 7 < 1, and the efficiency loss increases as 7 decreases. In
this section, we characterize the optimal contracts for two cases: (i) when the efficiency loss
is small (n > 7 = max{y/c/(c+ ¢),1/(e —1)}); and (ii) when the efficiency loss is large
(n <n=min{c/(c+¢),1/(e —1)})."

In Figures 4 and 5, we illustrate the principal’s value functions when there are efficiency
losses from training. A key characteristic of these value functions is that the execution
route is employed when the promised utility is high, indicating that the deadline is far off.
To understand these dynamics, we compare the execution-only and training-only contracts
again. As time horizons become longer, the sums of expected payoffs for both players from
these contracts converge to the expected surpluses of the no-deadline benchmark: 11 —¢/\g
for the execution-only contract and Il — 2¢/\4 for the training-only contract. Therefore,
efficiency determines which approach should be chosen. Since we focus on the case where
the training route is less efficient than the execution route, the principal would choose the
execution route when the deadline is distant.

This observation, combined with milestone and deadline effects discussed in the previous
sections, leads us to conjecture that there will be two switching points u; and 1, in deter-
mining the value function. The execution route is chosen when u > Uy or u < 1, and the

training route is chosen when u € (uy, us).

12These do not cover cases where the efficiency loss is intermediate. In such cases, the form of the optimal
contract depends heavily on the parameter values n and II, resulting in many subcases to analyze. Thus, we
focus on the extreme cases to provide results with clear economic implications.
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Small efficiency loss When the efficiency loss is relatively small, we show that sy is
always greater than the optimal initial promised utility level @ (Lemma OA.9). It implies
that the switch occurs at most once in the optimal contract. Therefore, a result similar to
the no-efficiency-loss case holds. In other words, Theorem 2 is robust to small efficiency

losses.

Proposition 2. Suppose thatn € (77,1), i.e., the efficiency loss from training is small. There
exist thresholds wa(n) and 7g(n) with Ta(n) > T(n) > wp such that the optimal contract is

determined as follows:
(a) when m > T4(n), a training-only contract is optimal;
(b) when Ta(n) > 1 > 7p(n), there exists a one-switch contract that is optimal;

(¢c) when Tp(n) > m > 7p, an execution-only contract is optimal.

Large efficiency loss Now suppose that the efficiency loss is large. Figure 5 illustrates
that the training path is either not employed at all (for small ) or is employed in the middle
of the contract (for large 7). As 7 increases, the milestone effect becomes more significant,
as it actuates the monitoring ability of the principal. However, the execution approach is
preferred at the beginning of the contract due to its efficiency and at the end of the contract
due to the deadline effect. Therefore, if training is ever employed, the contract will involve
two switches. We formally define the two-switch contract and state the theorem for the case

of large efficiency loss.

Definition 3. A contract is called a two-switch contract with a final deadline T" and two

intermediate deadlines 0 < S; < Sy < T if

(i) the agent is recommended to solve the problem using the basic skill by S; and the

reward upon project completion at time ¢ is RP,
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Figure 5: Value functions when the efficiency loss is large

(ii) if the problem is not solved by Sj, the agent is recommended to acquire the advanced
skill by S5, and if the advanced skill is acquired before Ss, the contract is extended by

1/A4 with the reward upon solution at time ¢ being R,

(iii) if the advanced skill is not acquired by Ss, the agent is recommended to solve the
problem using the basic skill by 7" and the reward upon project completion at time ¢

is RB, and
(iv) the contract is terminated if the project is not completed by 7.1

Proposition 3. Suppose that n is less than 0, i.e., the efficiency loss from training is large.
There exists a threshold 7ar(n) with Ty (n) > wr such that the optimal contract is determined

as follows:
(a) when m > Tp(n), there exists a two-switch contract that is optimal;

(b) when Ty (n) > m > 7R, an execution-only contract is optimal.

Notably, the principal typically prefers the execution route, since training entails a sub-
stantial efficiency loss. When 7 is sufficiently large, however, she may exploit the monitoring
benefit from the milestone effect by choosing the training path. If monitoring occurs, it is
optimal to place it in the middle of the contract: efficiency dominates at the start, while the

deadline effect dominates near the end.

13The rewards R{' and RP are defined in the same way as in the one-switch contract.
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For high-return projects, the theorem shows that all three forces—efficiency, the milestone
effect, and the deadline effect—shape the contract. The principal begins with recommending
execution with the basic skill (i.e., efficiency is the primary concern). If the problem remains
unsolved by a certain time, she recommends acquiring the advanced skill to monitor the
agent and bring them closer to the solution (i.e., the milestone effect becomes the primary
concern). She extends the deadline if the agent acquires the advanced skill, but if he does not
acquire it until the deadline is near, the principal reverts to execution with the basic skill in
a “last-ditch” attempt to solve the problem (i.e., the deadline effect becomes the preeminent

motivation).

6 Conclusion

In this article, we study the economic tradeoffs between execution and training in solving
a problem in the presence of agency frictions. The optimal contract is determined by the
interplay of three effects: efficiency, milestone, and endogenous deadlines. We show that the
form of the optimal contract crucially depends on the project return. When the efficiency
loss from training does not exist or is small, the optimal contract involves at most one switch.
Specifically, if the project return is low, the principal always recommends the agent to solve
the problem with a basic skill, whereas if the project return is high, the principal always
recommends the agent to acquire the advanced skill, then extend the deadline upon skill
acquisition. If the project return is intermediate, it is optimal to begin with training and
then switch to execution upon lack of skill acquisition. When the efficiency loss is large, the
principal generally recommends the agent to solve a problem with the more efficient basic
skill route. However, if the project return is above a certain cutoff, for a short period of time
in the middle of the contract, the principal recommends the agent to acquire the advanced
skill to mitigate moral hazard (i.e., there may be two switches).

There are numerous avenues open for further research. For example, the principal may
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be able to design the approaches directly. In this article, we assume that the two approaches
are exogenously given and the principal chooses between them. However, in practice, a
project manager often designs how many milestones to partition the main project into and
how difficult each subproject is. We could also introduce ‘learning by doing’ into the model.
If we assume that the agent learns from early errors, the arrival rate of project completion

would increase over time.'* We leave these intriguing questions—and others—for future work.
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Appendix

A Proofs for Section 3

A.1 Expected Surpluses of Benchmark Policies

In this section, we provide formal representations of expected social surpluses under the
execution-only and the training-only policies.
Suppose that the principal employs the execution-only policy. Recall that the solution

probability PP(T') is derived in (3.2). Next, the expected duration of problem-solving is

L(1 — 8T, (A1)

T
DE(T) = / T-Ag-e ETdr + T e 5 =
0 AB

Then, the expected social surplus of the execution-only policy is

WH(T)=11-PP(T) — c- DB(T) = (H — Ai) (1 —e?8T), (A.2)

Now suppose that the planner employs the training-only policy. Also recall that the
solution probability PP(T') is derived in (3.3). Conditional on advanced skill acquisition at

Ts, the expected duration is
T+A
DT, A7) = / 7 Aae MO e 4 (T 4 A) - e T HA=T),
Then, the expected duration of the project can also be derived as follows:

T
DNT,A) = / DY T, A, 7,) - Aae M7 dr, + T - e 4T
0

= )\—(1 — el . g rallHA), (A.3)
A
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Then, the expected social surplus of the training-only policy is

WAT,A) =T1- PAT,A) —c- DNT, A) (A.4)
— _ 2 (1 — gAY _ _C ) . o am+a)
= <H /\A> (1 € ) /\A (H b\ ) T-e .

A.2 Proof of Lemma 1

Proof of Lemma 1. Observe that PB(T,0) > PA(T,0) is equivalent to:
(14 AAT) > ePa—Ap)T

Note that the equality holds at T' = 0. While the left hand side linearly increases with the
slope A4, the right-hand side exponentially increases and the slope at T'=01is Ay — Ag €
(0,A4). Therefore, for small enough T, PZ(T,0) > PA(T,0), but there exists T > 0,
which makes the two sides equal. Then, we have PZ(T,0) > PA(T,0) for all T < T and
PB(T,0) < PA(T,0) for all T > T. O

A.3 Proof of Theorem 1

Expected surplus upon skill acquisition Let 7! represent the expected surplus when
the advanced skill is acquired and the remaining time is x. By following steps similar to

those used in the derivation of (A.2), we have

W= (H - Ai) (1 — e ATy, (A.5)

Suppose that the advanced skill is acquired at calendar time T'— z, meaning that z units

of time remain until the original deadline. Then, the skill acquisition extends the deadline

30



by A, giving the planner z + A units of time to solve the problem. Therefore, the expected

surplus in this situation is W}, ..

Expected surplus without skill acquisition Now we consider the situation that neither
the problem is solved nor the advanced skill is acquired by calendar time 7" — z. Then, the
(optimal) expected surplus W4 can heuristically be written as follows:

IT-Aga, -dz+ WA da(l—a,) -dz—cdz

WS = max
a-€{01} {1 —Aga, -dz — (1 —a,)-dz}- WoA

z—dz*

By using a Taylor expansion, W>% = W% — 179z, canceling out W2 on both sides,

z—dz

and taking the limit as dz — 0, we obtain a Hamilton-Jacobi-Bellman (HJB) equation:

W% = max [Apa. - (IT= WP%) + x4(1 —az) - (Why —WDH) —¢] . (HJBw)

a,€{0,1}

Since the project is terminated at the deadline, Wé) 2 = 0. Then, by using standard verifi-
cation arguments (e.g., Proposition 3.2.1 in Bertsekas (1995)), if a function w : [0,7] — R
is differentiable and satisfies (HJBy,) and w(0) = 0, then, w(z) = WA,

Expected surplus of the one-switch policy We now derive the expected surplus of the
one-switch policy with an intermediate deadline S and a deadline T. Denote Z =T — S.
The one-switch policy implies that a, = 1forall 0 <z < Z,and a, =0 forall Z <z <T.

Let W4B(z, A) denote the expected surplus of this policy when the remaining time is z. The

following differential equations then hold, where Wg‘B = %:
WEB(2, A) = Ay - (Wha—W3P(z,A)) —c for 2> Z, (A.6)
W2B(2, A) = Ag - (IL-W3P(z,A)) —¢  forz< Z. (A.7)
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By solving this with W27(0, A) = 0, we derive

(
WHE(2), if 2 <27,
WiB (2, A) = (H _ i_c) (1= e MED) LWB(7) . e MG (A.8)
A . if 2> Z.
— 4 (H — —) (2= Z) - e MEHA)
( Al

Also note that WilB(z, A) = WA (z, A) is the expected surplus of the training-only policy
and WP (2, A) = W5B(2) is the expected surplus of the execution-only policy.
We will prove the theorem by showing that there exists Z € [0, T] such that W£B(z, A)

solves (HJBy).

Optimal path at the deadline Note that W} = <H - E) (1 — e 48) and WA =0,

Then, at the deadline, the training path is preferred over the execution path if and only if

Ap(IT — W(?’A) < (Wi — W(?’A)

— ATl < (Ml —¢) - (1 — e7*48). (A.9)
With A4 = 2\ and simple algebra, we can derive that (A.9) is equivalent to A > A.

Optimal Policy Derivation We introduce two crucial lemmas, then complete the proof

of Theorem 1.

Lemma 3. Suppose that Ay = 2\5 and A < A. Then, there exists T such that (i) Ap(Il —
WE(2)) > Ma(WE Aa—=WPE(2)) for all = < T; and (ii) \g(I-WE(T)) = Aa (WL, —WE(T)).

z T+A
Proof of Lemma 3. Define H! = Ay (WL —W5E(2)) — Ap (I - WE(2)) and z = e 5%
Then, with some algebra, H! is equivalent to

Hi(z) = (M —c¢)- (1 —e 8. x%) —Agll — (A4 — Ap) - <H — é) -(1—2). (A.10)
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By using A4 = 2\p, with some algebra, Hy(z) can be rewritten as follows:
Hl([[‘) = (/\BH — C) .r — ()\AH o C) . G_AAA ) 172

Define
ABH — C . e)‘AA
/\AH — C

z

(A.11)

Note that # < 1 when A < A. Additionally, observe that H;(2) = 0 and H,(x) < 0 for all

Tz <x<1.

Now set 1" = _10/51(::). Then, 7' > z is equivalent to z > #, which implies H,(z) < 0.
Therefore, for all z < T, Ag(Il — WE(2)) > Aa(W} o — WP(2)). In addition, Hy(%) = 0
implies Ap(IT = WH(T)) = \a(W}, , — WE(T)). O

Lemma 4. Suppose that Ay = 2Xp and \a(W}i, o — WE(Z)) > Ag(Il = WEB(Z)) for some
Z > 0. Then, \a(Wha = W3P(2,4)) > Ap(Il = W3P(2,A)) for all z > Z.

Proof of Lemma 4. Define H? = Ay(WL o — WB(2,A)) — Ap(Il — W2B(2,A)) and y =

e *(=2) Note that, for any z > Z,

WAB (=, A) WP (Z) + (H Sk WB<Z>) (1-y)
+ (H - i) -e A og(y) -y

and
C
Win=Waia+ <H Y W§+A> (1-y).

Then, with some algebra, H? can be rewritten as follows:

Hy(y) = Hy +hi- (1 —y) + hs - log(y) -y (A.12)
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where

2
hi =4 - <H—i—W}+A> — (A4 — Ap) - (H——C—WB(Z)),

hy = (H - Ai) ceMaldtA) -
A

Observe that

h
Hg(y) - _ﬁ <0,

i.e., Hy is strictly concave. By the assumption, we have Hy(1) = HZ > 0. In addition, we
have

lim Ha(y) = A (H - Ai> Il — (A4 — Ag) (H _ =

y—)() A

Then, by using the strict concavity of Hy, H»(1) > 0 and lim, .o Ha(y) = 0, we have
H,(y) > 0 for all y € (0,1). Therefore, A\a(Wh A — WB(2,A)) > Ap(Il = WB(z, A)) for
all z > Z. O]

Proof of Theorem 1. (a) Suppose that A > A. From (A.9) and W5(0) = 0, we have
Aa(WA —WE(0)) > Ap(IT — WE(0)). Then, by Lemma 4, Ay (WL o — WiB (2, A)) >
Ap(Il = W§tB(z,A)) for all z > 0. Then, by (A.6), Wiy = Wi'B(z, A) solves (HJBy)

z

for all z € R, i.e., the training-only policy is optimal.

(b) Suppose that A < A. Let T be the time defined in Lemma 3. If T < T, \g(IT —
WE(2)) > Aa(Wla — W5(z)) for all z € [0,T]. Then, by (A.7), W5(z) solves

(HIBw) for all z € [0,T7, i.e., the execution-only policy is optimal.

Now consider the case with T > T. Note that WEEP(2,A) = WP for all 2 € [0,77].
From Lemma 3, we have Ag(II — W?B(Z,A» > (Wl — W;}B<Z,A)) for all z €
(T, T)]. Then, by (A.7), W2P (2, A) solves (HIByy) for all z > T. In addition, we have

Ap(IT — W%‘B(T, A)) = Aa(Wi, a0 — W;}B(T, A)). By applying Lemma 4 for Z = T,
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we have Ay (W}, o —W2B (2, A)) > A\p(IT— WAB(z,A)) for all z > T. Then, by (A.6),
W%‘B(Z,A) solves (HJBy,) for all z > T". Therefore, W;‘B(z, A) solves (HIBy) for all

z €10, 7Y, i.e., the one-switch policy with 7" — T is optimal.

B Proofs for Section 4

B.1 Expected Payoffs

In this section, we formally present the expected payoffs of the principal and the agent,

conditional on the agent’s effort schedule.

Post-skill-acquisition payoffs We begin with the subgame where the advanced skill is
acquired at time t. Let uf, denote the agent’s continuation utility—the expected payoff when
the agent works until the problem is solved or the deadline 7" is reached.

Since this subgame only requires one more breakthrough, it is identical to the single-stage
benchmark of Green and Taylor (2016a). They show that the principal’s value function V),

is characterized as follows:

c _2a e
Vi (uy) = Wy — Uy = (H - E) (1 —e % M) — Uy (B.1)

Expected payoffs at time 0 Now consider the problem at time 0. The agent’s admissible
effort schedule (prior to either solution or skill acquisition) is B = {{f:}o<t<r : Bt € {0,1}}.
In this case, any arrival depends not only on the agent’s effort () but also the principal’s

path choice (a = {a;}o<t<r). Given (a, ), the probability that neither the solution nor the

15Gpecifically, the updated contract I' determines
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advanced skill has arrived by time 7 is f(a, 5;0,7), where

f(CL, Ba ta T) = 6_)\3 ftT asBsds—Aa ftT(l_as)ﬁst'

Accordingly, the probability density of the solution at time 7 is Aga.f; - f(a,3;0,7) and
that of the skill acquisition at time 7 is Aa(1 — a,)B; - f(a,B;0,7). If the agent follows
the recommendation, the above expressions simplify to: f(a; t,7)=e B Ji asds=Aa [/ (1=as)ds
Aga, - fla;t,7), and Aa(1 —a,) - f(a;t, 7).

Given a contract I', an effort schedule § and under the assumption that the agent follows

the recommendation in the updated contract, the principal’s expected payoff at time 0 is:

T
Po(/B, F) E/o {(H - RT) : )\BaT/BT + V]W(u}\—/[) : )\A(l - aT)ﬂT - C} ' .f(CL?Ba 07 T)dT'

while the agent’s expected payoff at time ¢ is:

T
UO(ﬂa F) E/O {R‘r : ABaTﬁT + u}-\/[ ’ >‘A(1 - G/T)BT + ¢(1 - ﬁ‘r)} ’ f(aa B; OaT)dT'

Similarly, the expected payoffs of the principal and the agent when the agent follows the
recommendation can be obtained by evaluating the general expressions using f (a;0,7) in

place of f(a, B0, 7). We denote these by Py(I') and Uy (I"), respectively.

Incentive Compatibility Using the terms defined above, we define incentive compatibil-

ity (IC) of contracts as follows.

Definition 4. A contract I' = {T, {at,Rt,ft}OStST} is incentive compatible if Uy(I') >

Up(5,T) for all g € B.

The objective of the principal is to find a contract I' that maximizes her ex ante expected
payoff Py(I") subject to the incentive compatibility constraint and the limited liability con-

straints R, > 0 for all 7 € [0, 7] and R. > 0 for all ¢t € [0,7] and 7 € [t,T"]. Designate such
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a contract as an optimal contract.

B.2 Recursive Formulation
B.2.1 The Agent’s Problem

Given a contract I, define the continuation utility that the advanced skill is acquired at ¢
as u', = U'(I") and the continuation utility at ¢ when neither the problem is solved nor the

advanced skill is acquired as
~ T -
w501 = [ (Rt 3= -t e
t

Observe that

0= ut + (Rt - Ut)/\BCLt + (U?W - Ut)/\A(l — at) (HJBPK)

where u; = %.

Also note that (ICy) for a; = 0 and (IC;) for a; = 1 can be written together as follows:
(Rt - ut))\BCLt + ('U/IEV[ — Ut)AA(l — at) 2 §Z§ (IC)
The following lemma shows that this condition serves as a sufficient condition for incentive

compatibility defined in Definition 4.

Lemma 5. Given a contract I', suppose that there exists a continuous and differentiable
process {us yo<i<r satisfying (HIBpk) and ur = 0, and (IC) holds for 0 <t < T. Then, T

18 1ncentive compatible.

Proof of Lemma 5. The proof is inspired by Proposition 3.2.1 in Bertsekas (1995).

Consider an arbitrary admissible action 8 € B. Using (HIBpg), (ICy) and (IC;), we can
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derive that
0> 4 + (R — ur) ApasB + (uhy — ue)Aa(l = ar) B + o(1 = By),
or equivalently,
—t; + (Apas + Aa(l — @) B - ug > Ry - Apagf +uly, - Aa(1 — ay) B + o(1 — Br).
It is further equivalent to

e $a5:0,0) 2 [(Rdnae +ubyda(l =) B+ 01— 5] - Fla, 5;0,1).

By integrating the above inequality from 0 to 7" and using uy = 0, we can derive that

T
up = / [(Rdpay + uyAa(l — ap)) Be 4+ 0(1 = Br)] - f(a, B;0,t)dt = Up(B3,T)
0

for all 5 € B. Furthermore, the equality holds when §; = 1 for all ¢ € [0,7] from (HIBpg),
i.e., uy is equal to UO(F). Thus, UO(F) > Uy(B,T) for all 5 € B, which implies incentive

compatibility. O

B.2.2 The Principal’s Problem

We now explore how the principal’s value function V'(u;) evolves. Note that V' (0) = 0 since
the agent will not participate in the contract when the continuation utility is zero. This
will serve as a boundary condition. The value function V(u;) can be heuristically written as
follows:

— cdt + (11 — Ry) Agapdt + Vs (ulhy )M a(1 — az)dt

V(ut) = Rglll?vffat
+ {1 — )\Batdt - )\A(]_ - at)dt} . V(ut-i-dt)
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subject to (IC).
By using V' (utiar) = V(ug) + V' (up)idt 4 o(dt), canceling V(u;) on both sides, taking

the limit as dt — 0 and plugging (HJBpgk) in, we obtain an HJB equation:

0= max J(V(), R,up,a). (HIBy)

R,U]\/[,a

where

JV(),Rupy,a)=—c+ (Il — R—V(u)Apa+ (Var(up) — V(u)Aa(l — a)

—{(R —u) pa + (upr — uw)Aa(1 —a)} - V'(u) (B.2)

Then, the principal’s problem is to solve (HIJBy) subject to (IC) with the boundary
condition V(0) = 0. The following lemma shows that the solution of the problem maximizes

the principal’s expected payoff subject to a promise keeping constraint Uy(I") = w.

Lemma 6 (Verification Lemma). Suppose that a differentiable and concave function V solves
(HIBy) subject to (IC) with the boundary condition V(0) = 0. Then, for any incentive-

compatible contract I' with Uy(I') = u,

Proof of Lemma 6. Consider an arbitrary (deterministic) incentive-compatible contract I'

where the agent’s expected payoff is given by u;. The payoff to the principal under I' is

Py(T) :/OT(H—Rt—c-t)-)\Batf(a;O,t)dt
+/0 (Vi (uly) — ¢ t) (1 —ap) f(a;0,t)dt —c-T - f(a;0,7T)

= /OT ((IT = Ry) - Apay + Var(uly) - Aa(1 — ap) — ¢) f(a;0,¢)dt.
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Since V solves the HJB equation, we have

0>—c+ (1 — R, — V(w))Agas + (Var(uly) — V(w))Aa(1 — ay)

—{(Ry — us) - Apag + (uhyy — ug) - Aa(l — ar) } V' (wy).
By using (HJBpg), rearranging, and multiplying by f(a;0,t), we can obtain that

(Agay + Aa(1 — ap)) f(a;0,t) - Vi(ug) — fla;0,t) - V' (uy) i
(B.3)
> f(a;0,1t) (I — Ry) - Apay + Var(uhy) - Aa(l — ap) — ¢

Note that

% ( f(a 0,t) - f/( )) = (Apa; + Ma(1 — at))f(a; 0,t) - V(ut) — f(a; 0,t) - f/'(ut)ut

Then, by integrating (B.3) over [0, 7] and noting that f(a;0,0) = 1, up = 0 and V(0) = 0,

we have

V(uo) = V(uo) — f(a;0,T)V (ur)
T .
2/ f(@;0,8) - ((IL = Ry) - Apae + Var(uly) - Aa(1 — a;) — ¢) dt = Py(T).
0
Therefore, V (ug) is greater than or equal to any deterministic contract where the agent’s

expected payoff is equal to uy. Since V is assumed to be concave, it is greater than or equal

to any randomized contract. O

B.3 Value Function Candidates and Implementation

Lemma 7. The following statements hold.
(a) An execution-only contract with the deadline u/¢ implements a pair of expected payoffs
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of the principal and the agent (VP (u),u) where

VB(u) = WP (%) — . (B.4)

(b) When 0 < uy < u, a one-switch contract with the intermediate deadline (v —uy)/¢

and the final deadline u/¢ implements (VA8 (u|uy),u) where
1
VAB (uluy) = W{?l% (E —) — u. (B.5)

(¢c) A training-only contract with the deadline u/¢ implements (VA8 (u|0), ).

(d) The following differential equations hold:

oVE (1) = Mg (H — % —u— VB(U)> —c, (B.6)
SVAE (ufuy) = Mg <VM(u + L) - VAB<uyul)) —e. (B.7)

Together with Theorem 1, this lemma implies that (V(u),u)—defined in (4.2)—can be
implemented by one of the above three contracts. Moreover, there exists u; > 0 such that

V can be rewritten as follows:

VE(u), if u < 4,
V(u) = (B.8)

VAB(U’IAQ), if u 2 ﬂl.

Specifically, @ is chosen to be equal to ¢T if /A4 <A, and 0if 1/A4 > A. The following

lemma provides useful properties of V and 1.

Lemma 8. Suppose that Ay = 2Ag. The following statements hold.

(a) if 4 > 0, VAP (iy]iy) = VB (y) and VAP (u|u) < VB'(u) for all uw < wuy, and if

4y = 0, VAB'(0]0) > VB (0).
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(b) V'(u) > —1 for all u > 0.

(c) V is concave.

B.3.1 Proof of Lemmas

Proof of Lemma 7. (a) Let I'g(T) denote a execution-only contract with the deadline T

The agent’s expected payoff is

T T 1
UQ(FB(T)) :/ RT)\Be—ABTdT _ / ) (T — T+ )\_) )\Be_)\BTdT
0 0

B

T
_ _ —ABT
=—¢(T—1)e .

— 4T,

Therefore, Uy(I'p(u/¢)) = u.

Also note that the sum of the expected payoffs of the principal and the agent should

equal to the expected surplus from the execution-only policy with a deadline of T"

Py(Tp(T)) + Uy(Tp(T)) = WH(T).

Therefore,

Py (Tg (u/9)) =W (u/¢) —u = V" (u).

(b) Let T'ap(Ty,T) denote a contract with a switch from the training path to the execu-
tion path at 7} and the deadline 7. The subcontract at time ¢ < 77 is denoted by

fAB(t|T1,T). Then, the agent’s expected payoff for the subcontract fAB(t|T1,T) at
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time ¢t is

. T+55 1 1 ot
GEanT ) = [0 (T4 5 =t ) e
t

A4 A4
T+
= _¢(T+i—t>.
t

1
— T - —Aa(r—t)
¢ < + " T) e v

Also note that

Ty R T 1
| UBantrlT TYhae = [T 5~ rhae e
0 A

0

— — (T —7)e M7 = ¢T — (T — Ty)e M7,

. =
Then, the agent’s expected payoff at time 0 is

Ty .
Uo(Tap(Ty,T)) = / UL ap(T|T1, T))Age 2 7dr
0

T
1
+ e T o(T+ — — T))\Be_’\B(T_Tl)dT
7 AB

=¢T — §(T — Ty)e Tt — e MT | (T — 1) ¢ 50— T) Tl] = ¢T.

Thus, Uo(FAB(Tl,U/¢)) = Uu.

As in the previous case, the sum of the expected payoffs of the principal and the agent
is equal to the one-switch policy with the intermediate deadline Tj, the deadline T,

and the extension 1/\4:
Py(Cap(Th,T)) + Uo(Tap(T1, T)) = Wilp (T, 1/A ).

By plugging in 7' = u/¢ and T) = (u — u1)/¢, (B.5) holds.

(c) Note that a training-only contract with a deadline T is equivalent to a contract with

a switch from the training path to the execution path at 77 = T and a deadline
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T. Therefore, by the previous result, a training-only contract with the deadline u/¢

implements (VA5 (u|0),u).

(d) By the construction of W2,
WHE(T) = A\p(Il = WE(T)) — ¢, (B.9)
for all 7" > 0. Similarly,
WRB(T, 1/Xa) = Aa(Wi iy 0, = WEB(T,1/A4)) — ¢, (B.10)

forallTZT.

Using the definitions of VEZ, VAB and Vy, (B.6) and (B.7) follow.

Proof of Lemma 8. (a) Suppose that 4; > 0, which implies that 1/A4 < A. Now set

A =1/X\4. In Lemma 3, T'is chosen to satisty Ap(II-W?5(T')) = )‘A(W%H/AA_WB(T))
and \p(IT — W8(2)) > AW, — W5B(2)) for all z < T.

Using Lemma 7 (d) and WB(T) = WZ’Q‘B(TA, 1/X\4), we can derive that VAP (i]i) =

VB (4y) and VAP (u|u) < VP (u) for all u < .
When 4; = 0, and thereby 1/A4 > A, it follows from (A.9) that VAP (4y|a,) >
VB (11y).

(b) Since a longer the deadline increases the expected social surplus, W*(T, A) is increasing

in T'. Therefore,

V' (u) = —1>-1.
(w) 5 >
(C) IfUSth
/" B" ¢ )‘QB 2By
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Now assume that u > ;. By using (B.9), (B.10) and V(i) < VAP (iy|dy), we can

derive that

A C AA 4
Blig)g) <TM———— — 24 (1 2 )3t B.11

Using (A.8), we can derive the followings though some algebra:

AB! . Aa 2 )‘—A(ﬁl—u) B/ 2c c _2g 1
VAR (ulin) = E e? W(j)— H—/\— +2 H—)\— e @
A A

c A 3 JRRE.Y. Yoy
S b R B (s — 6 Wt
(n-5) (%) e

By plugging (B.11) in, we have

) A\ ragg A — 2\p Aa — 2\p e\ _Pag
VAB” < (24 7 (41—u) m— — S 1
(ulty) < 5 e O = )\B>c—|— P e

Then, from Mg = 2Xp, V' (u) = VA" (ultiy) < 0 for all u > .

B.4 Value Function Verification (Proposition 1)

The goal of this subsection is to prove Proposition 1. Specifically, we show that the value

function defined in the previous section solves (HJBy ) subject to (IC). To achieve this, we

introduce functions that specify potential deviations and then establish useful properties as

a lemma, followed by the proof for Proposition 1.

First, define

LB(u,R) = J(V(),R,-,1) = Ag(Il = R —V(u)) — c — Ag(R — u)V'(u). (B.13)
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Given u, maximizing this function with respect to R > u+ ¢/\p is equivalent to maximizing
the right hand side of (HJBy) under (IC) with a = 1.

Similarly, define

LAu,w) = TV, - w,0) = Aa(Var(w) — V(u)) — ¢ — Aa(w — u)V' (u). (B.14)

Given u, maximizing this function with respect to w > u+ ¢/ 4 is equivalent to maximizing

the right hand side of (HJBy) under (IC) with a = 0.

Lemma 9. Suppose that I1 > c/\g and Ay = 2\p. Then, for any u > 0, LB (u, R) <0 for

all R>u+ ¢/ g, and L (u,w) <0 for all w > u+ ¢/Aa.
Proof of Lemma 9. We begin by showing LZ(u, R) < 0 for all R > u + ¢/Ag. Observe that

oLP

o = w1+ V(W) <0,

from Lemma 8 (b). Also note that

LB (u,u+ ¢/Ag) =Ap(Il — u— V() — ¢ — $(V'(u) + 1)

=Ag(II = W*(u/d,1/X4)) — ¢ — W*(u/p,1/X4) < 0.

The last inequality is due to (HJBy/). Therefore, LZ(u, R) < 0 for all R > u + ¢/\5.
For L#, observe that
oLA

vy o _ 1" >
5 Aa(w —u)V"(u) >0

by the concavity of V. Therefore, it is sufficient to check whether LA (u,u + ¢/X4) < 0 for
all u > 0.

Note that for all u > 4y, L*(u,u + ¢/A4) = 0 holds by (B.7). Now, suppose that
u < 1y, thereby V(u) = VE(u). Using (B.7) and Lemma 8 (a), we have L (u,u + ¢/\4) =
d(VAB (uu) — VP (u)) < 0 for all u < 1. O
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Now We prove Proposition 1.

Proof of Proposition 1. We begin by showing that J becomes zero when the value function
V is utilized alongside contractual terms with binding ICs.

When u > 4y, V(u) = VAB(uld;). Then, by (B.7),

T (VAP (uln), - u+ /ra, 0) =0.

Likewise, when u < 4y, V(u) = VB(ul), and by (B.6),

J (VP(), u+¢/Ap, -, 1) =0.

Lemma 9 shows that J is nonpositive for any feasible deviations. Therefore, V solves
(HJBy) subject to (IC).

The concavity of V is shown in Lemma 8 (c). If 4, = 0, V(u) = VAB(u|0) is differentiable
for all uw > 0. If 4, > 0, VB(u) is differentiable for all u < @, and VA2 (u|a,) is differentiable
for all w > 4. By Lemma 8 (a), V is differentiable at u; as well. Also note that V(0) = 0.
Therefore, by Lemma 6, for any incentive compatible contract promising the agent u units
of utility, the principal’s expected payoff is lower than or equal to V(u).

Last, by Lemma 7, there exists a contract implementing (V(u), u). Therefore, V(u) is the
principal’s maximized expected payoff subject to the promise-keeping constraint Uy(I") = u

and the incentive compatibility constraints. O]

B.5 Thresholds

In this section, we explain how to pin down the thresholds 75 and m4 and provide some

properties of them.
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First, recall that w4 is the solution of 1/A4 = A. This gives us

& = ~2.392. B.15
4= (B.15)

Also recall that the threshold is relevant to whether the switching point 44 is greater
than @ or not. Since V is concave, @; < @ if and only if V'(4;) > 0. Observe that by using

the formula of VZ and (A.11), we can derive that

)\BH — C>2

oy — ) )
) =V = =

By solving the equation making the above equal to zero, it follows that V'(4;) > 0 if and

only if

7T§7TB:

_c-e—i—qb-l—\/qb(c-e—k(b). (B.16)

We conclude the section by showing that 7wg lies between 7z and 4.

Lemma 10. When Ay = 2Xp, 75 € (7p,Ta).

Proof of Lemma 10. From ¢ < ¢, we have

~ 2.077.

TB >

_ et +vet1
€

Therefore, by (B.15), 75 < ma.

Next, observe that

—ple—D+ygc-etd)  gWetl—(e—1))

c-c

™ — T =

Since ve+1—(e—1)~ .21 >0, 7 > 7p. O
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Online Appendix for

“Execution vs. Training under Endogenous Deadlines”

Yonggyun Kim Curtis Taylor

In this online appendix, we provide the proofs for Section 5, specifically the value func-
tion and optimal contract characterizations when there is an efficiency loss from training
(Proposition 4, Proposition 2, and Proposition 3). Some results in Appendix B can still
be utilized (e.g., Lemma 5, Lemma 6, and Lemma 7) as they do not use the parametric

assumption Ay = 2Ap.

OA.1 Value Function Characterization

We begin by specifying a value function that can be implemented by a two-switch contract

defined in Definition 3.
Lemma OA.1. The following statements hold.

(a) When 0 < wuy < uy < u, a two-switch contract with the intermediate deadlines

(u —uz)/p, (u—uy)/¢ and the final deadline u/¢ implements (VEAB (u|uy, us), u) where

VBAB (u|uy, up) = (H — )\i) (1 — e%B(”T”)> + (VA8 (ug|uy) + uz)e%B(“T“) — .
B
(OA.1.1)
(b) The following differential equation holds:
OV AR (uluy, us) = Mg (H - )\i —u — VBB (yluy, u2)> —c. (OA.1.2)
B



Proof of Lemma OA.1. (a) Let T'pag(Ti, T, T) denote a contract with two switches at
Ty = (u—wug)/¢ and Ty = (u — u1)/¢ and a deadline T' = u/¢. Note that at time T}
(if the problem has not been solved), the remaining contract is equivalent to I' y5(T5 —
T, T — T1). Recall that Uy(Tap(To — T4, T — T1)) = ¢(T — T1). Then, the agent’s

expected payoff at time 0 is

T
Uo(Tpan(Ty, 1o, T)) = (T +1/Ap — T)Ape P7dr
0

+ e MM (T (T, — Ty, T — TY))

=¢T — ¢(T — Th)e 21 e )(T — 1)) = ¢T = w.

Also note that

Po(Tpap(Th,T5,T)) + Uo(T'pap(T1, 12, T))

T
= / (L — er)Ape *P7dr — cTye ™M
0
+ e (Py(Tap(Ty — Ty, T —T0)) + Up(Tap(To — T1, T —T1))).
Recall that Uo(Tan(T3, T7)) + Po(Cas(TT)) = VAB(GTII6(T] — T3)) + 6(T] — T},

By plugging in 77 =T — T}, Ty, = T, — Th, ¢T) = u — uy and ¢T, = u — uy, the right

hand side of the above equation is equal to:

(H - 5) (1—eM) e (VA (uglun) + g} = VPP (u) + 1w,
B

thUS, PU(FBAB(T17T27T)> = VBAB(Ul'LLl,UQ).



(b) Last, by taking the derivative of (OA.1.1) and multiplying by ¢, we have

A A
OV B (uluy, us) =g (H — i) e ) _ )\ p (VA5 (ug|ur) + us) e 2w _ g

thus, (OA.1.2) holds.
[l

Based on the intuition presented in the main text, we conjecture the value function

defined as follows.

VEB(u), if 0 <u <y,
V(u) = VAB(u|iy), if Gy < u < i, (OA.1.3)

VBAB(U’al,’[LQ), if QALQ < Uu.
\

The following proposition shows that there exist 4, and 19 such that the above three value

functions are smoothly pasted, and the resulting function is the principal’s value function.

Proposition 4. Suppose that n is less than 1.
(a) (Smooth Pasting) There exist Uy > U1 > 0 such that
i. VB'(u) > VAB (ulu) for all 0 < u < iy;
i. VAP (4q)ay) > VB (), and if the equality holds, VAP (ty]0y) > V" (iy);
dii. VAP (u)iy) > VBAB (u|ay, ) for all iy < u < fy;
. VBAB (G5)0, Gg) = VAP (tg] 1) and VBAB" Gyt G0) > VA (1ig]t1);
v. VI (uliy, iig) > L IAa(Var(u + ¢/Aa) = VEAB (uliiy, @) — ¢] for all u > .

(b) (Large Loss) If n < —L=, there exists Ty (n) such that



1. ﬁ2>ﬁ1>0ifﬂ'>ﬁ']y[(77).
(¢) (Small Loss) If 25 <n <1, there exist wa(n) > 7(n) such that
1. fLQ:ﬁl:OifﬁB(n)ZW>1,'

Q. Gy >y > 0 if 7a(n) > 7w > 75(n);

iti. Gy >0y =0 if 7> 75(n).

(d) The function V defined in (OA.1.3), with Gy and Gy derived in (a), serves as the

principal’s value function.

OA.1.1 Proof of Proposition 4

We begin by identifying which approach will be chosen at the deadline. Note that the
execution path is chosen at the deadline if and only if VZ'(0) > VAZ(0|0). The following

lemma provides the parametric condition for this.

Lemma OA.2. If n < 1/(e — 1), the inequality VE'(0) > VAB'(0|0) always holds. If n >
1/(e —1), VB'(0) > VAB(0(0) is equivalent to

e—1

T <Taln) = Me—D-1

Moreover, if m = 7a(n), then V' (0) = VAB(0|0) and VE"(0) < VAB"(0[0).

Proof of Lemma OA.2. By VE(0) = VAB(0|0) = 0 and Lemma 7 (d), we have

oVE(0) = Agll — ¢ — ¢,

¢VAB/(0|0) = AAVM(i) —c= M4 <H — i) 1—el)—9—c
/\A )\A



Therefore, V2'(0) > VAB'(0|0) is equivalent to:
(ne—1) = 1) Apll < c(e —1).

Therefore, when n < -2, VF'(0) > V45'(0/0) always holds, and when n > -1, V5'(0) >

VAB'(00) is equivalent to m < 74(n).

Next, assume that n > 1/(e — 1) and 7 = 74(n). With some algebra, it follows that

The right hand side is positive from 7 > 1/(e — 1), thus, VAB"(0[0) > VE"(0). O

Next, we establish a condition under which the execution route is always employed.
When this condition does not hold, a switch from execution to training occurs. We show the

existence of the switching point .

Lemma OA.3. There exists p(n) > 2Ag/Aa = 2/(n + 1) with 7y (1) = 1 such that the

following statements hold.
(a) If 1 <7 < 7p(n), VB (u) > VAP (ulu) for all u> 0.

(b) Suppose that one of the following statements hold: (i) n < 1/(e — 1) and © > 7p(n);
(i) n > 1/(e — 1) and 7a(n) > 7™ > 7a(n). Then, there exists Gy > 0 such that
VB (ay) = VAP (i]ay), V(i) < VAP (@]dn) and VP'(u) > VAP (ulu) for all
u € [O, ﬁl),'

A
Bu

Proof of Lemma OA.3. Define x = ¢~ ¢ . Using (B.6) and (B.7), VAP (uu) — ¢V ' (u)
can be expressed in the form of Hy(x) with A = 1/\4, as defined in (A.10) in the proof

of Lemma 3. We also consider this as a function of . With the definition of 7, it can be



rewritten as follows:

Hi(z;m)=—{(n+Dr—1}-c-ela™ +nrn—1)-c-a—(1—n)-c (OA.1.4)

Observe that

O*H,

W(%W) =—Mm+Dn{n+Dr—1}-c-eta

thus H; is a strict concave function in z when 7 > 1. Let z*(w) be the solution of
max, Hi(z;7) subject to 0 < x < 1. Then, when 7= > 1, from the first order condition,

we can derive that

2*(IT) = nir —1) } 16 (OA.1.5)

{(n +D{(n+ )7 —1}e!

Now define

3=

h(r) = Hy(z"(m);7) = K (#) (m=1)-c—=(1=n)-c

1
where K = 77’7—; (n’]z) " Observe that

. (%) =(1-ne | fl)z (n((nllln));y - 1] -

from n <1 and n(1 —n)e < ¢ <1< (n+1)% In addition, lim h(r) = oo and

T—>r00

W' ()

_ Kr(l+n)c m—1 ntl -0
- oT—1 (n+LHm—1 '

Therefore, there exists a unique 7 such that h(7) =0 and 7 > 2/(n+ 1), and we denote this

—1
6When 7 < ((77:11))2%’ the solution of the maximization problem maxo<,<1 Hi(x;7) is a*(m) = 1.

-1
However, we can show that ((7777:11))2%1_—77 < 1 for any 0 < 71, which implies that we can focus on the interior
solution when 7 > 1.



solution by 7as(n). Also note that when n =1, h(2/(n+ 1)) = h(1) = 0 thus 75(1) = 1.

(a)

(b)

Suppose that 1 < 7 < 7a(n). We have 0 > h(r) = Hy(2*(n);7) > Hy(z;7) for all

0 <z < 1. It is equivalent to VB (u) > VAP (u|u) for all u > 0 in this case.

First, suppose that n < 1/(e—1) and © > 73(n). Then, we have 0 < h(mw) =
Hi(x*(n); 7). In addition, by Lemma OA.2, we have H,(1;7) = ¢(VAF'(0[0)=V5'(0)) <
0. Then, by concavity of H; w.r.t.  and ‘98—]?(55*(#); 7) = 0, there exists x; € (z*(7), 1]
such that Hy(zy;7) = 0, 88—%(%;#) < 0 and Hy(z;7) < 0 for all z € (21,1]. By

defining 4; = —(¢/Ag)log 1, the above conditions can be translated into: V' (4y) =
VA (G4]d), VB (6y) < VAB"(g]ty) and VB (u) > VAB (u]u) for all u € [0, iy).

Next, suppose that 7 > 1/(e — 1). Note that by the definition of 74(n), if 7 > 74(n),
Hi(1;7) > 0. Tt implies that h(m) > Hi(1;7) > 0 and m > 75(n). Therefore, we
can see that 74(n) > 7p(n). If 74(n) > m > 7a(n), we also have Hy(z*(7);7) > 0 >
I—L(l; 7). By using the same arguments as above, we can show that there exists 4; > 0
such that VB'(4y) = VAR (4y|ay), VB (4y) < VA" (4y|6y) and VB (u) > VA (u|u)

for all u € [0, ).

]

The following lemma shows that when there is an efficiency loss from training and the

training path is employed, there will be an additional switching point, .

Lemma OA.4. Suppose thatn < 1, I1 > ¢/Ag and one of the followings hold: (i) V' (i) <

VAB (4 |in); (i) VB (1y) = VAP (i4]y) and V" (0y) < VAP (y)dy). Then, there exists

G > Gy such that VAP (tiy]tiy) = VAP (Gg| 0y, Gia) and VAB” (U|ty) < VBAB" (G004, G10) and

such tiy is unique. Moreover, VAP (ultiy) > VAP (ultiy, u) for all u € (i, 1s).



Proof of Lemma OA.4. Using (OA.1.2), (B.7) and VP48 (uiy, u) = VAB (uliy), oV BAP (ultiy, u)—

VAP (u]tiy) can be rewritten as follows:

AT = A {Vag(u + ¢/ Aa) +u+ ¢/ Aa} + (ha = Ap) (VAP (ul @) + w).

A ~
By performing a similar derivation as in (A.12) and using n = i—g —land y = e~ o (umt),
the above expression can be further rewritten as follows:
Hy(y) = L= Moy (Aall — 0)6_1_%{“ 14+ 1 logy |y
1417 I+n
(OA.1.6)

1—n g
+ c— (Mgl —c)e” @ “*|y.
|1 Ot - g Ee |

Note that Hy(1) = ¢V BA (]diy, 1y) — VAP (Gy]tiy) = VP () — VAP (t4]11) < 0

by assumption. By differentiating H, twice, we have

~ Aaa 1
i (y) = #(AAH - c)e—l—«f‘m; > 0.

Since IT > ﬁ > ﬁ, H, is strictly convex in y. Also note that

I 1—n
il_r%Hg(y) = 1+nc>0.

By the convexity of H,, there exists 1y, € (0,1) such that (i) Hy(y) < 0 for all y € (5, 1), (ii)
Hy(ys) = 0, and (iil) Hy(ys) < 0. Let Gy = 1y — % log yo. Then, from (i) and (ii), we have
VA (u|iy) > VBAB (u)dy, u) for all u € (1, 6y) and VAP (Gg)dy) = VAP (tyty, G5). Addi-

tionally, since y is decreasing in u, H}(y,) < 0 implies that VAB" (iy|i1) < VBB (1y)i1y, dy).

]

Next, when there is a switching point s, the following lemma shows that the execution

path is employed for all v > 5.



Lemma OA.5. Suppose that m > 1, VAP (Gy]ty) = VPP (Uy|ty, 1n) and VAP (Up|0,) <
VBABY (G|t 12). Then, Aa (Var(u+ ¢/Xa) — VEAB (ultin, 42)) — VAP (i, p) — ¢ < 0

for all u > 1.

Proof of Lemma OA.5. By differentiating (B.6) and (B.7), we have
SVAB (i) = Aa (VI (u+ d/Aa) +1) — Mg <VAB,(u|ﬂ1) + 1) ,
SVEAB (4|t i) = —Ag (VBAB’(uml,az) + 1) .
Then, VAB' (iyi,) = VAP (Giy]tiy, G2) and VAB” (y)0y) < VBAB" (4|0, Gi2) imply that

Aa = Ap) (1 + VAB (4g]ti1)) > Aa(Vi (2 + ¢/ Aa) + 1)

/ Al — EYe
= n(1+ VA48 (a2|a1))>(n+1)< A¢ C> e~ d0L, (OA.1.7)

Define a function Hj : [Ug,00) — R as
Hs(u) = Aa [VM<U +¢/Aa) = VI (uliy, ﬂz)] - ¢VBAB,<U|7117 lz) — c.

With some algebra, we can derive that

A

Hi(u)=(n—1)c— (Al — 6)6_714@2_1 e

A
A

N A N
Ty —u) 7]¢ ({ rAB/(a2|ﬂ1) 1) e f(ug—u)‘
Also note that

Hy(tig) = Aa [V (it + ¢/Aa) — VAP (g]i))] — ¢ — oV EAE (a1, 112)

= oV AP (o] ty) — GV PP (0]tiy, n) = 0.



A ~
Define z = e ¢ “>~%_ Then, H3(u) can be rewritten as follows:

_2a

Hy(w) = (n = Ve = (Tl = )™ #5271 46 (VA (igfig) +1) 2

and ﬁg(l) = Hg(?fLQ) = 0.

Note that
() = = (0 + DT = e~ 4517 g (VAP (i) +1)

By (OA.1.7), we can derive that

A

(1) = —(+ DO = )25 4 0 (VAP i) 1) > 0.
Also note that
~ AA A
Hi(z) = —(n+ 1)n(Aall — c)efTA"Tlx”_l < 0.

Therefore, Hj(z) > 0 for all 0 < z < 1. Since Hs(1) = 0, Hs(z) < 0 for all z € (0,1). Thus,

A (Vi (u+ ¢/ a) — VEAB (u]tiy, i) — ¢V EAE (ulity, tia) — ¢ < 0 for all u > . O

Lastly, we show that the resulting value function is concave, and that L? and LA —the

functions specifying deviations, defined in (B.13) and (B.14)—are nonpositive.

Lemma OA.6. Suppose that m > 1 and n < 1.
(a) V is concave;

(b) for any u > 0, LP(u, R) < 0 for all R > u+ ¢/\p, and L*(u,w) < 0 for all w >

Proof of Lemma OA.6. (a) When u < 4y, V"(u) = V3"(u) < 0 from Lemma 8 (c).

10



When 4; < u < U9, the inequality (B.12) is still applicable, and from A4 < 2Ap, we

have V"(u) = VA" (ult,) < 0.

When u > 4y, by differentiating (OA.1.1) twice, we have

A 2 A "
VA iy, ) = — <?B) ' (H = = (VP s, i) + a2>) e
B

Note that VAB(t|dy, Gio) + 1p cannot exceed the first-best expected surplus IT — ¢/Ag,

thus, the above expression is negative.

Since these component functions are smoothly pasted at @; and s, the entire value

function is concave.

As in the no efficiency loss case, V(u) + u is increasing in u, thus, V'(u) > —1 and it

gives % < 0. Thus, it is sufficient to show that LZ(u,u + ¢/Ag) < 0 for all u > 0.

Observe that from (B.6), (B.7) and (OA.1.2), we have

0, if u <y, oru > o,

LP(u,u+ ¢/\p) =
¢VBAB/(U‘7:617U) — ¢VAB/(U‘”EL1)7 if u € (ﬁlyﬁQ)'

Since @y and 1y are chosen to satisfy VEAB (ulty, u) < VAP (uliy) for all u € (i, 1),

LP is always nonpositive.

Likewise, from the concavity of ), ‘%—UA > (0. Thus, it is sufficient to show that LA(u, u+

¢/Aa) <0 for all u > 0. Then, we have

(

SVAB (u|u) — VB (u), if u <,

07 ifu e (?ll,ag),
LA(“’: U+ ¢/)‘A) =

M(Var(u+ ¢/ Aa) — VEAB (u]y, 42)) ) R
if u > ,.

—C — ¢VBAB/<U|7:L17 az),

11



By Lemma OA.3 and Lemma OA.5, L# is always nonpositive.

Now we prove Proposition 4.

Proof of Proposition 4. We start by showing that, for each condition in (b) and (c), the

switching points are as stated and the conditions in (a) also hold.

(b-i & c-i) By Lemma OA.3 (a), VP (u) > VAP (u|u) for all u > 0. Note that V7 (u) =
VBAB(4)0,0) and

VAP (ulu) = Aa(Vag(u + ¢/ a) — VA (u]0,0)) — ¢

by (B.7) and VAB(ulu) = VB(u). Therefore, with i; = @y = 0, the conditions (a-i)—(a-iv)

hold trivially, and the condition (a-v) holds as demonstrated above.

(b-ii & c-ii) By Lemma OA.3 (b), there exists 4; > 0 such that the conditions (a-i) and
(a-ii) hold. Next, by Lemma OA.4, there exists 4y > 4y such that the conditions (a-iii) and
(a-iv) hold. By Lemma OA.5, the condition (a-v) holds.

(c-iii) By Lemma OA.2, VA'(0[0) > VZ(0). By setting @; = 0, the conditions (a-i) and
(a-ii) hold trivially. Next, by Lemma OA.4, there exists 4y > 0 such that the conditions

(a-iii) and (a-iv) hold. By Lemma OA.5, the condition (a-v) holds.

(d) Following the same steps of the proof of Proposition 1, V solves (HJBy ) subject to
(IC). O

12



OA.2 Proofs of Proposition 2 and Proposition 3

Lemma OA.7. Suppose that m > Tp(n) and n < c/(c+ ¢). Then, Uy is less than .

Proof of Lemma OA.7. Since V is strictly concave, iy < @ is equivalent to 0 < V'(ug) =

VAP (i) = VBAB (iiy]tiy, G1y). Then, 0 < VBAB(iy]diy, Gy) is equivalent to:
Mg (tiy + VAB (Gg]dy)) < ApIl — ¢ — ¢. (OA.2.1)

Also note that VEAB (4|t 1y) = VAP (ty]t1) and VBAB (Giy]tiy, Gip) = VAP (tig]ty) imply

that
Ap(IL — iy — VAP (o)1) = Aa (Var (i + ¢/ Aa) + @a + ¢/ Xa) — Aa (VAP (o] i) + 2

by (B.6) and (B.7). By plugging (B.1) into the above equation, we can derive that

(= M) (VA2 ltgliy) + itz) =M (n _ Ai) (1-e o) Z
A

A

A (VAL (Gg|dy) + dig) =nApIl — ¢ — (Aall — 0)677*‘112—1‘

Then, by plugging this into (OA.2.1), 0 < VBAB! ({1,014, G1p) is equivalent to

A

n(c+ @) —c < (Aall — 0)677%271.

Since II > ¢/Ap > ¢/\4, the right hand side of the above inequality is always greater
than 0. Since it is assumed that n < ¢/(c + ¢), the left hand side of the above inequality is
always less than or equal to 0. Therefore, the above inequality always holds, i.e., 15 is less

than . OJ

13



Lemma OA.8. Suppose that n > 7 = max{l/(e — 1),+\/c/(c+ ¢)}. There exists 7p(n) €

(T (), Ta(n)) such that uy < @ if and only if m > 7p(n).

Proof of Lemma OA.8. From n > 1/(e — 1), T4(n) exists. Suppose that 7 > 74(n). By
Lemma OA.2, 4; = 0. Note that
e—1 e—1 c+ ¢

7a () (e—1)p—1"e—2 - ¢ e

Then, the project is feasible and w is greater than 0, i.e., u > ;.
Now suppose that my(n) < m < wa(n). Since V is strictly concave, 4; < @ is equivalent
to 0 < V(i) = VP (111). Note that 0 < VP'(4,) is equivalent to:

m < 6_7ﬁ1 = i’l. (OA22)

Recall that #; is a solution where H,(z), as defined in (OA.1.4), equals zero. Additionally,

m(n) <7 < ma(n) implies that H,(1) < 0 < H(z*) where z* is defined in (OA.1.5)."7

There are two possible cases that satisfy (OA.2.2): (i) z* > —2—; (ii) —2— > z* and

Agll—c’ Apll—c
Hy(5-4=) <0,
The first case is equivalent to ﬁ{(#) < 0. By algebra, we can show that it is

equivalent to

m+1)mr—1 ne ..
(r — " 1¢ . (OA.2.3)

The second case is equivalent to f]{(ﬁ) > 0 and ﬁl(%ﬁ_c) < 0. By algebra, we can
show that it is equivalent to
ne -n.n (T] + ]‘)ﬂ— —1 - —n—1_n
= 1gz§ " < IS < (n(c+ @) —c)ep " (OA.2.4)

17For simplicity, IT is omitted from the definition of H; and z*.
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Last, by the proof of Lemma OA.3, we can show that = > my(n) is equivalent to

(n+ D —1 ( 772772)77 ne (OA.2.5)

(m —1)mtl 1- 1+n

Now we compare the above three conditions. Using n > +/c¢/(c + ¢), by simple algebra,

we can show that

2\
ne . —nn —n—=1.n N ne
< - < .

. lqb "< (nlc+¢) —clep " ¢ 1—n2) 147

Therefore, the inequality

m+1mr—1

(m — 1)ntt < (nlc+¢) —c)ep "

imply that (OA.2.3), (OA.2.4) and (OA.2.5). Define m(n) be the value of 7 that makes both
sides of the above inequality equal. Then, m5(n) > my(n) since m < 7y (n) implies T < 7(n).

Therefore, there exists mz(n) > my(n) such that 4y < @ if and only if 7 > wg(n). O

Lemma OA.9. Suppose that n > 7 = +/c/(c+ ¢). Then, Uy > .

Proof of Lemma OA.9. By following the proof of Lemma OA.7, 1y > u is equivalent to

(n—1ec+ng > B%A(al—ag)

v =7y (OA.2.6)
(Al —c)e” @™

Y

By the proof of Lemma OA.4, 9 is the solution, which is not equal to 1, of Hy(y) = 0."8

Since uy > 11, if ¥ > 1, the above inequality holds, thus, we restrict attention to the case of

7 < 1. Observe that the inequality Hy(7) < 0 implies (OA.2.6) because Hs is strictly convex
in y and Hy(1) < 0.

18The function H, is defined in (OA.1.6).
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Using the definition of H; in (OA.1.4) and &, = e_ATBﬁR H,(y) can be rewritten as follows:

. 1— _ 1— dag
Hofy) == Ty + | =1 e+ oy Qall = e # ™ M logy |y

Also note that #; is chosen to satisfy H; (1) being greater than equal to zero.
By plugging the definition of 7 into the above equation, we can derive that
7 1—n 7 U

Hy(y) = 1 TZC<1 —¥) — Hi(@)y + i ((n = 1ec+n¢)logy.

Now define a new function G as follows:

1—n SN n
c(l—y)—Hy(2)y+ —— —1)c+ log v,
T (1 —y) — Hi(d)y 1+n((n )e+n¢)logy

Gy) =

and it is enough to show that G(y) < 0 for all y < 1.

Note that

G"(y) :_1177 ((n—ly)?chmb) <0

from n > \/c/(c+ ¢) > ¢/(c+ ¢). Also note that

G/(1) = = (@) + 7 (= e+ 1P0) <o

from n > \/c/(c+ ¢) and H,(i) > 0. Lastly, note that G(1) = —H;(#;) < 0. Therefore,
for all y < 1, G(y) < G(1) + G'(1)(1 — y) < 0. Therefore, Hy(7) < 0 and uy > . O

Now we prove Proposition 2 and Proposition 3.

Proof of Proposition 2. Note that s is always greater than u by Lemma OA.9 since n >

16



V¢/(c+ ¢). Additionally, using Lemma OA.2, Lemma OA.3 and Lemma OA.8, we have

(
VB<E), ifT('F <W<%B(ﬁ),

V(@) = VAB@lay), if 7p(n) <7 < 7aln),

VAB(@|0), if 7a(n) < .
(

As in Theorem 2, the value functions above can be implemented by execution-only, one-

switch and training-only contracts, respectively. ]

Proof of Proposition 3. By Proposition 4 (b-i), when m < 75/(n), 4 = tg = 0. By Proposi-

tion 4 (b-ii) and Lemma OA.7, when m > 7y(n), @ > Gs > 4y > 0. Therefore,

VBAB(7]0,0) = VB(u), if mr <7 < 7um(n),
V(u) =

VBAB (wltiy, Gy), if Tar(n) < .

By Lemma OA.1, (VBAB(w|d,, iy),w) can be implemented by a two-switch contract. There-
fore, when m € (7p, 7p(n)], the execution-only contract is optimal, and when © > 75/(n),

there exists a two-switch contract that is optimal. O
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