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Abstract

I study the value of information in monotone decision problems with potentially multidimensional action 
spaces. As a criterion for comparing information structures, I develop a condition called monotone quasi-
garbling, which involves adding reversely monotone noise to an existing information structure. Specifically, 
this noise is more likely to return a higher signal in a lower state and a lower signal in a higher state. I show 
that monotone quasi-garbling is a necessary and sufficient condition for decision makers to obtain a higher 
ex-ante expected payoff. This new criterion refines the garbling condition by Blackwell (1951, 1953) and is 
equivalent to the accuracy condition by Lehmann (1988) under the monotone likelihood ratio property. To 
illustrate, I apply the result to problems in nonlinear monopoly pricing and optimal insurance.
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1. Introduction

Consider a pair of information structures that provide signals about uncertain states. When 
can we say that one is superior to the other? This fundamental question has numerous economic 
applications including investment, monopoly pricing, and auctions. A common feature in such 
settings is that the decision maker would like to take a higher action when a higher signal is 
realized, that is, the decision problem is often monotone.

The classical way of comparing information structures is to use the garbling condition de-
veloped by Blackwell (1951, 1953). By this criterion an information structure (G) is worse than 
another (F ) if G can be obtained from F by adding some noise—in other words, G is a garbling 
of F . Intuitively, the added noise reduces the value of information. Indeed, Blackwell’s condition 
implies that for any preferences that satisfy the von Neumann-Morgenstern axioms, the expected 
payoff under F is higher than under G. This is a powerful result because once a pair of informa-
tion structures are ranked by the garbling order, the rank is preserved in every decision problem. 
Although the garbling order is an important criterion for comparing two information structures, 
its usefulness is restricted because it is difficult to meet its requirements.

If we restrict attention to monotone decision problems, it is sometimes possible to compare 
information structures that are unrankable by Blackwell’s condition. One well-known criterion 
for doing so is the accuracy condition by Lehmann (1988). Lehmann considers a specific class 
of monotone decision problems and shows that his criterion refines Blackwell’s garbling condi-
tion. Although the accuracy condition has been applied widely in economic settings, its precise 
meaning remains underexplored. Specifically, the accuracy criterion does not deliver as clear 
an economic interpretation as Blackwell’s garbling condition does. This leads to the first main 
question of this paper: can we understand Lehmann’s condition by using the garbling notion?

To answer this question, I introduce a novel concept called monotone quasi-garbling by mod-
ifying Blackwell’s garbling order. Specifically, I relax the assumption of the garbling condition 
that the added noise is independent of the state. I define the monotone quasi-garbling order by 
(i) allowing noise to be state-dependent; (ii) but restricting noise to be reversely monotone in the 
sense that it is more likely to return a higher signal in a lower state and a lower signal in a higher 
state. In other words, G is a monotone quasi-garbling of F if G can be obtained from F by 
adding reversely monotone noise. I show that if the monotone likelihood ratio property (MLRP) 
holds, then Lehmann’s order and the monotone quasi-garbling order are equivalent (Theorem 1). 
This result provides a fresh view for interpreting Lehmann’s condition by using the noise notion: 
under the MLRP, F is more Lehmann accurate than G if and only if G is generated by adding 
reversely monotone noise to F .

The second question of this paper is whether we can extend Lehmann’s analysis to general 
classes of monotone decision problems. In the seminal paper on monotone comparative statics, 
Milgrom and Shannon (1994) posit a partial order on a multidimensional action set to study 
the direction of change of the optimal actions in response to exogenous changes in parameter 
values. Nevertheless, in most extant work studying information in monotone decision problems, 
the common assumption is that the action set is unidimensional and the order of actions is simply 
inherited from the real line (Quah and Strulovici, 2009; Chi, 2015; Athey and Levin, 2017; Li and 
Zhou, 2020). Because of this restriction, we cannot directly apply these earlier results to problems 
involving multidimensional actions such as an investment decision with Arrow-Debreu securities 
or a nonlinear monopoly pricing mechanism involving a menu of tariffs and quantities. I show 
that the introduction of the monotone quasi-garbling order helps extend information comparisons 
2
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to general monotone decision problems exhibiting multidimensional actions in applications such 
as these.

As a first step towards this characterization, I introduce the notion of general monotone deci-
sion problems, where the action space can be multidimensional. Since there is no natural order in 
a multidimensional set, the action set needs to have a partial order that determines which actions 
are higher or lower. To ensure the meaningfulness of this partial order, I impose a condition called 
the dominated decreasing decision rule (DDDR). Specifically, this condition requires that for any 
state-contingent decision rule that decreases in states with respect to the partial order, there exists 
an action dominating the decision rule independently of states. In addition, given an information 
structure, to say that a decision problem is monotone, an optimal action under a higher signal re-
alization needs to be higher in the partial order, namely the monotone comparative statics (MCS) 
condition. Given a decision maker’s payoff function and an information structure, if there exists 
a partial order on the action set satisfying the DDDR and MCS conditions, I say that the decision 
problem is generally monotone.2

One of the key results of this paper is that if G is a monotone quasi-garbling of F , for any 
general monotone decision problem, the decision maker obtains a higher ex-ante expected payoff 
under F than under G (Theorem 2). That is, the monotone quasi-garbling order is a sufficient 
condition for informativeness on general monotone decision problems. Intuitively, under mono-
tone decision problems, the information structure G is degraded by adding reversely monotone 
noise to F , thus, the expected payoff under G will be less than under F . In addition, when a 
class of decision problems includes every simple hypothesis testing problem, I also show that 
monotone quasi-garbling can serve as a necessary condition for informativeness on the class of 
decision problems (Theorem 3).

I apply this result to analyze the value of information in monopoly pricing with second-degree 
price discrimination as in Maskin and Riley (1984). At the beginning of the game, the seller 
chooses between two sources of information about the buyer’s type. Unlike a standard monopoly 
pricing problem where the seller makes a unidimensional choice of price or quantity, in a non-
linear pricing problem, the seller needs to provide a menu of tariffs and quantities–which is 
multidimensional. Although this problem is usually modeled as a two-player game, it can be cast 
as a multidimensional decision problem for a seller constrained by incentive compatibility and 
individual rationality by regarding the buyer’s type as a state. Moreover, with fairly mild assump-
tions, I show that this application satisfies the DDDR condition and the MCS condition, thus the 
main result of this paper is also applicable in this setting. In Appendix C, I also provide another 
application on optimal insurance with Arrow-Debreu securities.

The rest of the paper is organized as follows. I review the literature in Section 2. Section 3
sets up the preliminary notions. In Section 4, I introduce the monotone quasi-garbling order and 
compare it to other orderings such as Blackwell’s garbling condition and Lehmann’s accuracy 
condition. In Section 5, I define general monotone decision problems and show that the monotone 
quasi-garbling order is a necessary and sufficient condition for informativeness. I apply this result 
to a nonlinear pricing problem in Section 6. Proofs and examples omitted from the text are in the 
Appendix.

2 My analysis differs from Milgrom and Shannon (1994) in that they identify conditions of utility functions that make 
decision problems monotone whereas I assume that monotone comparative statics are already present and focus on the 
comparison of information structures.
3



Y. Kim Journal of Economic Theory 211 (2023) 105679
2. Related literature

The comparison of information structures has been applied in numerous economic situations: 
Bayesian games (Gossner, 2000; Mekonnen and Leal Vizcaíno, 2021), investment decisions 
(Cabrales et al., 2013), auctions (Persico, 2000; Ganuza and Penalva, 2010), matching markets 
(Roesler, 2015), principal agent models with moral hazard (Kim, 1995), competitive markets 
with adverse selection (Levin, 2001), strategic sampling (Di Tillio et al., 2021), and monopoly 
pricing (Athey and Levin, 2017; Ottaviani and Prat, 2001).

Since Blackwell (1951, 1953) introduced a criterion to compare information structures in gen-
eral decision problems, subsequent studies have refined this criterion by restricting it to monotone 
decision problems. In a seminal paper, Lehmann (1988) mentions location experiments to point 
out the limit of Blackwell’s condition. Then, he restricts decision problems to have the MLRP 
for information structures and monotone utility introduced by Karlin and Rubin (1956) and es-
tablishes a theorem showing that his accuracy condition is a necessary and sufficient condition 
for informativeness. Persico (2000) utilizes this accuracy condition for decision problems with 
single crossing utility.3 Quah and Strulovici (2009) introduce the interval dominance order prop-
erty which is weaker than the single crossing property and shows that Lehmann’s condition can 
also be utilized as a criterion for decision problems with this property. These studies are well 
summarized by a unified framework provided by Chi (2015). He establishes an equivalence of 
accuracy, informativeness, and posterior dispersion under decision problems with supermodular, 
single crossing, and interval dominance order preferences. Last but not least, Li and Zhou (2020)
show that Lehmann’s ordering is robust under monotone decision problems with ambiguity-
averse decision makers. However, as mentioned in the introduction, all of these studies assume 
that the action set is unidimensional whereas this paper allows the decision maker to choose a 
multidimensional action.4

To my knowledge, Jewitt (2007) is the only paper that links Blackwell’s condition and 
Lehmann’s condition. He shows that under the MLRP condition, Lehmann’s condition is equiv-
alent to Blackwell on Dichotomies, which means that for any pair of states, an information 
structure restricted to those states is more Blackwell sufficient than the other. Although this char-
acterization helps us to understand better the relationship between the conditions by Blackwell 
and Lehmann, it still does not provide a ‘garbling’ interpretation of Lehmann’s condition.

A property of the monotone quasi-garbling criterion is that the ordering is independent of prior 
beliefs. It is also true for the conditions of Blackwell and Lehmann. On the other hand, several 
recent studies exploit prior beliefs to refine Lehmann’s condition. Athey and Levin (2017) re-
strict utility functions to satisfy certain conditions such as supermodularity and fix a prior belief, 
then introduce a criterion called monotone information order. Ganuza and Penalva (2010) apply 
integral and supermodular orders, which are defined on probability measures on expectations of 
states, to auction problems. Note that the expectation of states largely depends on the prior belief. 
Last, Cabrales et al. (2013) restricts attention to an investment decision problem and shows that 
an entropy ordering, which is prior dependent, gives a complete informative ordering. Since these 
orderings utilize prior beliefs as additional sources for information comparisons, they perform 
better than prior independent orderings if the prior is known. Nevertheless, it is still important 

3 Jewitt (2007) compares Karlin Rubin monotonicity and the single crossing property.
4 Quah and Strulovici (2007) extend their comparative statics results in Quah and Strulovici (2009) to the multidimen-

sional action case, but they do not provide an information comparison result. In Section 5.1, I discuss how their extended 
results can be applied in this paper’s framework.
4
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to establish prior independent orderings because it is essential for applications with unknown 
or multiple prior beliefs. For example, in the presence of ambiguity, Li and Zhou (2016, 2020)
emphasize the role of prior-free criteria such as the conditions of Blackwell and Lehmann.

3. Preliminaries

Let � ≡ [ω, ω] ⊂ R be the set of states of nature. Denote ω ∈ � as a generic state. The deci-
sion maker, hereafter the DM, has a prior belief � ∈ �(�), where �(Z) is the set of cumulative 
distribution functions on any compact set Z ⊂ R.56

Let the set of actions or feasible decisions be A ∈ A where A is a collection of multidimen-
sional real-valued compact sets, i.e., A is closed, bounded, and A ⊂Rn for some n ∈N . Note that 
I allow an action to be multidimensional. Assume that the DM’s payoff function u : A × � → R
is continuous in a ∈ A. Let UA denote the set of all continuous real-valued payoff functions on 
A × �.

An information structure is composed of (i) a closed interval of signals X ≡ [x, x] ⊂ R; and 
(ii) a collection of (cumulative) distribution functions F : � → �(X), i.e., F(·|ω) ∈ �(X) for 
all ω ∈ �. Simply denote this information structure as F . For another information structure G, 
let the set of signals be Y ≡ [y, y] ⊂ R, i.e., G : � → �(Y).

Without loss of generality, we assume that � is continuous in ω ∈ �, and F and G are con-
tinuous in x ∈ X and y ∈ Y for all ω ∈ �, i.e., there is no mass point. To achieve this, we can use 
the construction introduced in Theorem 5.1 of Lehmann (1988): if H ∈ �([z, z]) is discontin-
uous at z0, i.e., p ≡ H(z0) − H(z−

0 ) > 0 where H(z−
0 ) ≡ limy↑z0 H(y), we can define another 

distribution H̃ ∈ �([z, z + 1]) such that

H̃ (z) =

⎧⎪⎨
⎪⎩

H(z), if z < z0,

H(z−
0 ) + p · (z − z0), if z ∈ [z0, z0 + 1],

H(z − 1), if z > z0 + 1.

Then, H̃ is continuous on [z0, z0 + 1], and from the DM’s perspective, the random variables 
generated from H and H̃ are statistically equivalent.7 From the continuity, there exist the prob-
ability distribution functions corresponding to �, F(·|ω), and G(·|ω): i.e., there exist λ, f (·|ω)

and g(·|ω) such that �(ω) = ∫ ω

ω
λ(z)dz, F(x|ω) = ∫ x

x
f (z|ω)dz, and G(y|ω) = ∫ y

y
g(z|ω)dz.8

When a prior belief is � and an information structure is F , the marginal signal distribution, 
denoted by F� ∈ �(X), is defined as F�(x) = ∫ ω

ω
F(x|ω)λ(ω)dω for all x ∈ X. Suppose that a 

5 By Theorem 1.2.1 of Durrett (2019), for any H ∈ �(Z), the following statements hold: (i) H(·) is increasing; (ii) 
H(·) is right continuous, i.e., limy↓z H(y) = H(z); and (iii) H(z) = 1 where z ≡ maxZ.

6 The terms ‘increasing’ and ‘decreasing’ are used in a weak sense, unless noted otherwise.
7 Let X and X̃ be random variables generated from H and H̃ , and U be a uniformly distributed random variable 

independent to X . Then, observing X̃ is equivalent to observing X and U (in the case of X̃ ∈ [z0, z0 + 1]). Since U is 
an independent random variable which does not affect the DM’s utility, observing X̃ is essentially equivalent to observing 
X .

8 By using the similar construction, the case with discrete state and signals can be transformed to the continuous 
state and signal case. For example, when a discrete set of states � = {ω1, · · · , ωN } with 0 < ω1 < · · · < ωN and the 
probability mass function λ : � → [0, 1] with 

∑N
n=1 λ(ωn) = 1 are given, we can construct the corresponding continuous 

state space and the probability distribution function λ on � ≡ [0, ωn] as follows: if ω ∈ (ωn−1, ωn] for some n ≥ 2, 
λ(ω) = λ(ωn)/(ωn − ωn−1), and if ω ∈ [0, ω1], λ(ω) = λ(ω1)/ω1. In addition, the DM’s utility function can be simply 
extended: if ω ∈ (ωn−1, ωn] for some n ≥ 2, u(a, ω) = u(a, ωn), and if ω ∈ [0, ω1], u(a, ω) = u(a, ω1).
5
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signal x is realized, i.e., f�(x) > 0 where f� is the probability distribution function correspond-
ing to F�. Then, the posterior belief, �x

F ∈ �(�), is defined as �x
F (ω) = f (x|ω) ·�(ω)/f�(x), 

or equivalently d�x
F (ω)dF�(x) = dF(x|ω)d�(ω).

The decision making process is given as follows.

1. The DM chooses between information structures F and G.
2. From the chosen info structure (say F ), the DM receives a signal x ∈ X.
3. The DM updates a belief on the state to �x

F (ω) and chooses a ∈ A.
4. The state ω is revealed and the payoff u(a, ω) is realized.

If the payoff function is u, when a signal is realized in the third stage, the DM chooses a ∈ A

to maximize the interim expected payoff function U : A × X → R defined as follows:

U(a;x) ≡
∫
�

u(a,ω)d�x
F (ω). (3.1)

Let A∗
F,�(x) ⊆ A denote the set of solutions for the interim maximization problem, i.e., 

A∗
F,�(x) ≡ arg maxa∈A U(a, x). Note that A∗

F,�(x) is nonempty since u is continuous and A
is compact. The expected utility of the DM given the information structure F at the first stage is 
that for any a∗(x) ∈ A∗

F,�(x),

V (F ;u,�) =
∫
X

U(a∗(x);x)dF�(x)

=
∫
X

∫
�

u
(
a∗(x),ω

)
d�x

F (ω)dF�(x)

=
∫
�

∫
X

u
(
a∗(x),ω

)
dF(x|ω)d�(ω).

(3.2)

Then, in the first stage, the DM chooses an information structure by comparing V (F ; u, �)

and V (G; u, �). Based on this comparison, the informativeness for decision problems in U ⊆⋃
A∈A UA ≡ U is defined as follows.

Definition 1 (Informativeness on U ). An information structure F is more informative than an-
other information structure G on U ⊆ U if and only if for all priors � ∈ �(�) and all u ∈ U , 
V (F ; u, �) ≥ V (G; u, �) holds.

4. Information ranking criteria

In this section, I introduce a novel condition called the monotone quasi-garbling order. Then, 
I explore how it is related to classical information ranking criteria such as Blackwell’s garbling 
condition and Lehmann’s accuracy condition. Since the monotone quasi-garbling order is moti-
vated by Blackwell’s garbling notion, I begin the section by reviewing the garbling condition.

Definition 2 (Garbling condition by Blackwell (1951, 1953)). An information structure G is said 
to be a garbling of another information structure F , denoted F �B G, if there exists a function 
� : X → �(Y) such that G(y|ω) = ∫

�(y|x)dF (x|ω) for all ω ∈ �.

X

6
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Blackwell shows that an information structure F is more informative than G for all decision 
problems if and only if G is a garbling of F . In other words, V (F ; u, �) ≥ V (G; u, �) for any 
set of actions A, payoff function u ∈ UA and prior belief � ∈ �(�) if and only if F �B G. 
Blackwell’s garbling condition is widely used by economists not only because it has a powerful 
equivalence condition but also because it has a nice interpretation. We can imagine that a signal 
y from information G is constructed by adding noise � to signals in X from information F and 
the noise deteriorates the quality of information so that F gives better information than G.

Even though the garbling condition is useful, this criterion is restrictive because it requires 
preserving the order for ‘all’ decision problems. If we restrict attention to ‘monotone’ decision 
problems, there is room to improve Blackwell’s ordering. I now introduce the monotone quasi-
garbling order by adding a monotone structure to the garbling condition.

Definition 3 (Monotone quasi-garbling). An information structure G is said to be a monotone 
quasi-garbling of another information structure F , denoted F �MQG G, if there exists a function 
� : X × � → �(Y) such that

1. G(y|ω) = ∫
X

�(y|x, ω)dF(x|ω) for all y ∈ Y , x ∈ X and ω ∈ �,
2. �(·|x, ω) ≥FOSD �(·|x, ω′) for all ω′ > ω and x ∈ X, i.e., �(y|x, ω) ≤ �(y|x, ω′) for all 

y ∈ Y .

We can easily observe that the garbling order implies the monotone quasi-garbling order. If 
G is a garbling of F via a function �̂ : X → �(Y), we can see that G is also a monotone quasi-
garbling of F by setting �(y|x, ω) = �̂(y|x) for all ω ∈ �, because a probability distribution is 
first order stochastic dominant over itself. However, the converse is not true. In Appendix A.2, I 
provide an example of a pair of information structure (F, G) such that F �MQG G but F�

B
G. 

This observation is formally stated in the following proposition.

Proposition 1. For any pair of information structures (F, G), F �B G implies F �MQG G, but 
F �MQG G does not imply F �B G.

The key difference between these two criteria is that the noise may depend on the state ω
under the monotone quasi-garbling order. Note that if there were no restriction on �, any infor-
mation structure G could be generated by adding state-contingent noise to F and it would be 
a meaningless criterion.9 The second condition restricts state-contingent noise to be reversely 
FOSD-ordered. This means that the noise is more likely to return a higher y for a lower state and 
lower y for a higher state, thus, it can be interpreted as a reversely monotone noise. We can guess 
that the reversely monotone noise would deteriorate the quality of information under monotone 
decision problems.

Next, I review the accuracy condition by Lehmann (1988), which is widely used in monotone 
decision problems. Then, I explore how it is related to the monotone quasi-garbling order.

Definition 4 (Accuracy condition by Lehmann (1988)). An information structure F is said to be 
more Lehmann accurate than another information structure G, denoted F �L G, if for all y ∈ Y , 

9 For example, when there is no restriction on �, we can use �(y|x, ω) = G(y|ω) for all x ∈ X, y ∈ Y and ω ∈ � to 
satisfy the first condition.
7
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a function � : � × Y → X defined by �(ω; y) ≡ sup {x | F(x|ω) ≤ G(y|ω)} is increasing in 
ω.10

An assumption that is usually paired with Lehmann’s condition is the monotone likelihood 
ratio property.

Definition 5 (Monotone likelihood ratio property). An information structure F is said to 
satisfy the monotone likelihood ratio property (MLRP) if and only if f (x0|ω0)f (x1|ω1) ≥
f (x1|ω0)f (x0|ω1) holds for all x1 > x0 and ω1 > ω0.

First, I show that Lehmann’s accurate condition implies the monotone quasi-garbling order, 
i.e., F �L G implies F �MQG G. Observe that �(ω; y) is increasing in y since G(y|ω) is 
increasing in y for any ω ∈ �. Construct a function � : X × � → �(Y) as follows11:

�(y|x,ω) ≡
{

1, if x ≤ �(ω;y),

0, if x > �(ω;y).

Then, we can easily check that �(y|x, ω) is well defined.12 In addition, since �(ω; y) ≤ �(ω′; y)

for all ω′ > ω and y ∈ Y , we have �(y|x, ω) ≤ �(y|x, ω′) for all x ∈ X, i.e., � is reversely 
monotone.

Last, observe that for all y ∈ Y and ω ∈ �,

G(y|ω) = F(�(ω;y)|ω) =
�(ω;y)∫

x

dF (x|ω) =
∫
X

�(y|x,ω)dF (x|ω).

Therefore, G is a monotone quasi-garbling of F . The following proposition formally states this 
result.

Proposition 2. Suppose that F �L G. Then, F �MQG G.

Next, I explore whether F �MQG G implies F �L G. The following proposition shows that 
the monotone quasi-garbling order implies Lehmann’s accuracy condition when F satisfies the 
MLRP. The proof is relegated to Appendix A.1.

Proposition 3. Suppose that an information structure F satisfies the MLRP. Then, F �MQG G

implies F �L G.

10 In Lehmann (1988), he implicitly assumes that F(x|ω) is continuous and strictly increasing in x, thus F−1(·|ω)

is properly defined and set �(ω; y) ≡ F−1(G(y|ω)|ω). Under the continuity and strict increasingness assumptions on 
F(x|ω), we have F(�(ω; y)|ω) = G(y|ω), thus, Definition 4 coincides with Lehmann’s original condition.
11 Although I assume that the cumulative distribution functions for the prior belief and the information structures are 
continuous, I allow the garbling functions are discontinuous.
12 First, �(y|x, ω) is increasing in y because �(ω; y) is increasing in y. Next, �(y|x, ω) is right-continuous in y
because (i) if �(ω; y) ≥ x, since �(ω; y) is increasing in y and �(ω; y′) ≥ x for all y′ > y, thus limỹ↓y �(ỹ|x, ω) =
1 = �(y|x, ω); (ii) if �(ω; y) < x, by the definition of �, we have G(y|ω) < x, then since G(y|ω) is continuous in y, 
there exist ε > 0 and δ > 0 such that G(y + ε|ω) < x − δ and �(ω; y + ε) < x, thus, we have limỹ↓y �(ỹ|x, ω) = 0 =
�(y|x, ω).
8
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MQG

(H,G)

B

(H,F )

L

(F,G)

(a)

(a) Without the MLRP

MQG = L

B

(b)

(b) With the MLRP

Fig. 1. The relationship among criteria.

Based on the above results, we can establish the equivalence between the monotone quasi-
garbling order and Lehmann’s order under the MLRP condition.

Theorem 1. Suppose that an information structure F satisfies the MLRP. Then, F �MQG G and 
F �L G are equivalent.

Last, I show that the MLRP plays a crucial role in the equivalence between the monotone 
quasi-garbling order and Lehmann’s accuracy condition. In Appendix A.2, in addition to the 
information structures F and G which are used in Proposition 1, I introduce an information struc-
ture H which does not satisfy the MLRP. In this example, I show that (i) H �B F but H�

L
F ; 

and (ii) H �MQG G but H�
B
G and H�

L
G. The first result implies that when the MLRP is 

not assumed, Lehmann’s accuracy condition is no longer a sufficient condition for Blackwell’s 
garbling condition. The second result means that there exists a pair of information structures 
that can be comparable by the monotone quasi-garbling order but neither by Blackwell’s gar-
bling condition nor by Lehmann’s accuracy condition. Therefore, the monotone quasi-garbling 
order generally permits more comparisons than the conditions by Blackwell and Lehmann. The 
following proposition formally states these arguments.

Proposition 4. Without the assumption of the MLRP on F , F �B G does not imply F �L G, and 
F �MQG G does not imply F �L G.

The results in this section are summarized in Fig. 1. Fig. 1a illustrates the relationship among 
Blackwell’s garbling condition, Lehmann’s accuracy condition, and the monotone quasi-garbling 
condition when the MLRP is not assumed on the supposedly higher information structure. On 
the other hand, if the MLRP is assumed on the supposedly better information structure, the 
Lehmann order and the monotone quasi-garbling order are equivalent and refine the Blackwell 
garbling condition as shown in Fig. 1b.

5. General monotone decision problems

In this section, I show that the monotone quasi-garbling order can serve as a criterion for 
comparing information structures under monotone decision problems. Specifically, I allow the 
set of feasible decisions, A, to be multidimensional. Unlike the unidimensional action space 
9
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case, there is no generic order in this setup. Hence, to establish a monotone decision problem 
under this general action space, an order on the set of actions needs to be properly defined. Since 
we will only use this order to compare the optimal actions, it does not need to be a complete 
order over A. Rather, a partial order, which can compare the potential optimal actions, would be 
enough. To say that a decision problem is monotone, (i) this partial order needs to be sensible; 
and (ii) an optimal action under a higher signal realization needs to be higher in this order.

Definition 6 (Dominated decreasing decision rule condition). A payoff function u : A × � → R
satisfies the dominated decreasing decision rule (DDDR) condition with respect to a partial order 
≥A of the set of feasible decisions A if for any decreasing (in terms of ≥A) state-contingent 
decision rule h : � → A,13 there exists â ∈ A such that14

u(â,ω) ≥ u(h(ω),ω), ∀ω ∈ �. (5.1)

This condition is about whether the partial order ≥A is sensible or not. Loosely speaking, 
under a given payoff function, a highly ranked action needs to be better for a higher state and 
worse for a lower state and vice versa for a lowly ranked action. According to this interpretation, 
a state-contingent decision rule, which is decreasing in states, should not be an optimal way 
of establishing a decision rule. This is because a highly ranked action (which is worse for a 
lower state) corresponds to a lower state and a lowly ranked action (which is worse for a higher 
state) corresponds to a higher state. The DDDR condition implies that any decreasing state-
contingent decision rule is dominated by a constant decision rule. In this sense, the order ≥A can 
be considered reasonable.

Definition 7 (Monotone comparative statics condition). An information structure F satisfies the 
monotone comparative statics (MCS) condition with respect to a payoff function u : A ×� →R
and a partial order ≥A, if for any prior belief � ∈ �(�), there exists a function a∗ : X → A such 
that a∗(x) ∈ A∗

F,�(x) and a∗(x) ≥A a∗(x′) for all x, x′ ∈ X with x ≥ x′.

This condition simply implies that there exists an optimal decision rule, which is increasing 
(in terms of the given partial order) with respect to the signal. I call a class of decision problems 
U is generally monotone with respect to an information structure F , if for any u ∈ U , there 
exists a partial order ≥A such that u satisfies the DDDR condition with respect to ≥A and the 
information structure F satisfies the MCS condition with respect to u and ≥A.15 I also call a 
decision problem u is generally monotone with respect to F if U = {u} is generally monotone 
with respect to F .

13 A state-contingent decision rule h : � → A is decreasing in terms of ≥A if h(ω) ≥A h(ω′) for all ω′ > ω.
14 The DDDR condition was originally introduced as an intermediate result for the information comparison charac-
terization in the context of unidimensional action spaces with utility functions satisfying the interval dominance order 
(IDO). Specifically, Quah and Strulovici (2009) presented this concept in Lemma 3, and utilized it to show the efficacy of 
Lehmann’s criterion under the IDO condition. Chi (2015) provided simple proofs to establish that the DDDR condition 
is valid when the utility function satisfies the single crossing property (Lemma 3.2) or the IDO property (Lemma B.3). 
Building upon these findings, I extend their results by showing that general IDO condition, which is defined under the 
multidimensional action spaces, is strictly weaker than the DDDR condition (Proposition 5, Appendix B).
15 The partial order ≥A is not necessarily fixed across the choice of payoff function u ∈ U , i.e., for any u1, u2 ∈ U , the 
corresponding partial orders ≥1 and ≥2 are not necessarily the same.
A A

10
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The following theorem stipulates that the monotone quasi-garbling order can serve as a suffi-
cient condition for informativeness on general monotone decision problems.

Theorem 2. Suppose that U is generally monotone with respect to an information structure G
and G is a monotone quasi-garbling of F . Then, F is more informative than G on U .

The formal proof is in Section 5.2, but I briefly delineate the idea of this result. Consider 
any increasing decision rule ψ : Y → A, i.e., ψ(y′′) ≥A ψ(y′) for all y′′ ≥A y′. When G is 
a monotone quasi-garbling of F , i.e., G is generated from F by adding a reversely monotone 
noise, I show that there exists ψ̃ : (0, 1) × X × � → A such that ψ̃ is decreasing in ω and for 
any ω ∈ �,

∫
Y

u(ψ(y),ω)dG(y|ω) =
1∫

0

∫
X

u(ψ̃(t;x,ω),ω)dF (x|ω)dt. (5.2)

Then, by applying the DDDR condition, we can construct a mixed-action decision rules φ :
X × (0, 1) → A on the information structure F which dominates ψ on G (Proposition 6). Now 
assume that u is generally monotone with respect to G, i.e., the optimal decision rule under 
G, a∗

G : Y → A, is increasing in y. By applying the above result, there exists a mixed-action 
decision rules dominating a∗

G, but this decision rule is dominated by a∗
F which eventually gives 

the expected payoff under F . Therefore, the expected payoff under F will be greater than that 
under G.

Next, to establish the necessary condition for informativeness, I introduce a bare-bones class 
of decision problems. Consider a binary action set A = {0, 1} and the generic order on A: 1 > 0. 
I define that u : A × � → R is a simple hypothesis testing problem if there exist 0 < κ < 1 and 
ω̂ ∈ � such that16

u(a,ω) =
{

−a · κ, if ω < ω̂.

a · (1 − κ), if ω ≥ ω̂.
(5.3)

I also refer to U as a class of such utility functions. The following theorem shows that the mono-
tone quasi-garbling order is a necessary condition for informativeness when the class of decision 
problems U includes U , i.e., every possible simple hypothesis problems. The proof is provided 
in Appendix D.1.

Theorem 3. Suppose that U ⊆ U , U is generally monotone with respect to information structures 
F , and F is more informative than G on U . Then, (i) F satisfies the MLRP; and (ii) F is more 
Lehmann accurate than G, thus, G is a monotone quasi-garbling of F .

In this theorem, I show that the informativeness implies the monotone quasi-garbling order 
by showing that an information structure is more Lehmann accurate than the other (recall that 
F �L G implies F �MQG G by Proposition 2). As an intermediate step for the result, it is also 
shown that F satisfies the MLRP when every simple hypothesis testing problems are generally 
monotone with respect to F .

16 This choice of utility function is inspired by Chi (2015). He shows that the class of monotone decision problems with 
certain properties, such as super modular, single crossing, or interval dominance order preferences, includes U .
11
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Note that I impose different assumptions on the above results: in Theorem 2, I assume that 
the decision problems with a supposedly ‘worse’ information structure are generally monotone, 
whereas, in Theorem 3, I assume that the decision problems with a supposedly ‘better’ informa-
tion structure are generally monotone and the class of decision problems includes U . Therefore, 
if we assume that the decision problems with both information structures are monotone (and 
include U ), we can see that the monotone quasi-garbling order can serve as a necessary and 
sufficient condition for informativeness. In addition, under these assumptions, both information 
structures will satisfy the MLRP and the monotone quasi-garbling condition and Lehmann accu-
racy condition are equivalent.

Corollary 1. Suppose that U ⊆ U and U is generally monotone with respect to information 
structures F and G. Then, F is more informative than G on U if and only if G is a monotone 
quasi-garbling of F , or equivalently, F is more Lehmann accurate than G.

Remark 1. Corollary 1 extends the results of Chi (2015) that Lehmann’s accuracy condition can 
serve as a necessary and sufficient condition for the informativeness in some monotone deci-
sion problems. First, he assumes that both information structures have the MLRP, but I derive 
the MLRP as a result. Next, he restricts attention to the ‘unidimensional’ class of decision prob-
lems with well-known preferences such as supermodular, single crossing, and interval dominance 
order preferences. On the other hand, Corollary 1 can be applied to any (potentially ‘multidimen-
sional’) monotone decision problems including U .

5.1. General interval dominance order

Before presenting the proofs of the main theorems, I demonstrate how the concept of the 
general monotone decision problem is connected to the general version of the interval dominance 
order condition introduced in Quah and Strulovici (2007).

I assume that the state space is discrete as described in Footnote 8: � = {ω1, · · · , ωN } with 
0 < ω1 < · · · < ωN . Suppose that a compact set of action A ⊂Rn has a partial order ≥A with (i) 
transitivity (a′′ ≥A a′ & a′ ≥A a ⇒ a′′ ≥A a); (ii) reflexivity (a ≥A a); and (iii) anti-symmetry 
(a′ ≥A a & a ≥A a′ ⇒ a = a′). I also assume that the partial order is continuous: for all se-
quences {am}∞m=1 and {bm}∞m=1 with limm→∞ am = a, limm→∞ bm = b, and am ≥A bm for all 
m ≥ 1, then, a ≥A b. Let [a′, a′′] denote the set 

{
a ∈ A | a′ ≤A a ≤A a′′}. Then, if a sequence 

{am}∞m=1 in [a′, a′′] converges to a, by the continuity of the partial order, a′ ≤A a ≤A a′′, i.e., 
a ∈ [a′, a′′]. Therefore, [a′, a′′] is compact since it is a closed subset of A.

Now I briefly review the interval dominance order condition, then show that it is a sufficient 
condition for the DDDR condition in Proposition 5.

Definition 8 (Interval dominance order (IDO)). Let v′ and v′′ be two real-valued functions de-
fined on A. We say that v′′ dominates v′ by the interval dominance order (or, for short, v′′
I-dominates v′) if, for any a′′ >A a′, whenever v′(a′′) ≥ v′(a) for all a ∈ [a′, a′′],

v′(a′′) ≥ (>) v′(a′) =⇒ v′′(a′′) ≥ (>) v′′(a′). (5.4)

In addition, a payoff function u : A × � → R is said to be IDO-ordered with respect to ≥A if 
u(·; ω′′) I-dominates u(·; ω′) for all ω′′ > ω′.
12
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Proposition 5. Suppose that the set of actions A has a transitive, reflexive, anti-symmetric, and 
continuous partial order ≥A, a payoff function u : A × � →R is continuous in a ∈ A and IDO-
ordered. Then, u satisfies the DDDR condition with respect to ≥A.17

Proof of Proposition 5. First, I show that the payoff function u satisfies the DDDR condition 
with respect to the partial order. Consider a decreasing state-contingent decision rule h : � → A. 
I inductively define a sequence {ai}Ni=1 as follows: aN = h(ωN), and for all 1 ≤ n ≤ N − 1,

an = arg max
a∈[an+1,h(ωn)]

u(a,ωn). (5.5)

Note that an exists since u is continuous in a ∈ A and [an+1, h(ωn)] is compact.
Observe that u(an, ωn) ≥ u(a, ωn) for all a ∈ [an+1, an]. Then, by the IDO condition, we have

u(an,ωn′) ≥ u(an+1,ωn′) (5.6)

for all n′ > n.
Now set â = a1. Then, for all 1 ≤ n ≤ N , by (5.6), we have u(â, ωn) ≥ u(an, ωn). In addition, 

by (5.5), u(an, ωn) ≥ u(h(ωn), ωn). Therefore, u(â, ωn) ≥ u(h(ωn), ωn) for all 1 ≤ n ≤ N , i.e., 
u satisfies the DDDR condition with respect to the partial order. �

A natural subsequent question is whether the IDO condition can serve as a necessary condi-
tion. In Appendix B, I provide a simple (even unidimensional) example of a decision problem 
such that it is a general monotone decision problem but it does not satisfy the IDO condition. 
Thus, the IDO condition cannot be a necessary condition for the DDDR condition.

Next, to establish the MCS condition, additional conditions are needed. Following Topkis 
(1998), let a′ ∨ a′′ denote (if exists) the least upper bound of {a′, a′′}, that is, (a′ ∨ a′′) ≥A

a′, (a′ ∨ a′′) ≥A a′′, and a ≥A (a′ ∨ a′′) for all a with a ≥A a′ and a ≥A a′′. Likewise, let 
a′ ∧ a′′ denote the greatest lower bound of {a′, a′′}, i.e., a′ ≥A (a′ ∧ a′′), a′′ ≥A (a′ ∧ a′′), and 
(a′ ∧ a′′) ≥A a for all a with a′ ≥A a and a′′ ≥A a. A partially ordered set A is called to be 
a lattice if a′ ∨ a′′ and a′ ∧ a′′ exist for all a′, a′′ ∈ A. A payoff function u : A × � → R is 
supermodular in A if for all a′, a′′ ∈ A and ω ∈ �,

u(a′ ∨ a′′,ω) − u(a′,ω) ≥ u(a′′,ω) − u(a′ ∧ a′′,ω).

When an information structure F satisfies the MLRP, for any x′′ > x′, �x′′
F is the monotone 

likelihood ratio (MLR) shift of �x′
F , that is, λx′′

F (ω)/λx′
F (ω) is increasing in ω where λx

F is the 
probability mass function of �x

F . Also note that A∗
F,�(x) = arg maxa∈A U(a; x) is nonempty 

since U is continuous in a and A is compact. Under the IDO conditions on u and the MLRP 
of F , by Proposition 2 of Quah and Strulovici (2007), we have U(·; x′′) I-dominates U(·; x′). 
Observe that U is supermodular in A when u is supermodular in A. Then, by Theorem 1 of Quah 
and Strulovici (2007), we have A∗

F,�(x′′) dominates A∗
F,�(x′) in the strong set order, i.e., for 

any a′′ ∈ A∗
F,�(x′′) and a′ ∈ A∗

F,�(x′), a′′ ∨a′ ∈ A∗
F,�(x′′) and a′′ ∧a′ ∈ A∗

F,�(x′).18 Therefore, 
there exists a∗ : X → A such that a∗(x′′) ≥A a∗(x′) for all x′′ > x′, i.e., the MCS condition 
holds, and u is generally monotone with respect to F . The following corollary formally states 
these findings.

17 I thank Jianrong Tian for suggesting arguments with the IDO conditions that shorten the proof.
18 Quah and Strulovici (2007) actually impose I-quasisupermodular condition which is weaker than the supermodular 
condition.
13
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Corollary 2. Assume that the set of actions A is compact and a lattice with a transitive, reflexive, 
anti-symmetric, and continuous partial order ≥A. In addition, a payoff function u : A × � → R
is continuous, IDO-ordered, and supermodular in A, and an information structure F satisfies 
the MLRP. Then, u is generally monotone with respect to F .

5.2. Proof of Theorem 2

I begin by stating a useful lemma.

Lemma 1. For any reversely monotone noise � : X × � → �(Y) and random variable τ uni-
formly distributed on (0, 1), there exists a mapping m : (0, 1) × X × � → Y such that the 
cumulative distribution induced by m(τ |x, ω) is �(·|x, ω) and m(t |x, ω) ≥ m(t |x, ω′) for all 
ω′ > ω and t ∈ (0, 1).19

Proof of Lemma 1. The proof is a slight modification of Theorem 1.2.2 of Durrett (2019). For 
any t ∈ (0, 1), x ∈ X and ω ∈ �, define m(t |x, ω) ≡ supM(t |x, ω) where

M(t |x,ω) ≡
{
y ∈ Y = [y, y] : �(y|x,ω) < t

}
∪ {y}.

Note that M(t |x, ω) is nonempty and bounded above, thus, m(t |x, ω) is properly defined.
Now suppose that a random variable τ is uniformly distributed on (0, 1). Observe that 

Pr(m(τ |x, ω) ≤ ŷ) = �(ŷ|x, ω) for any ŷ ∈ Y if and only if L(ŷ|x, ω) = R(ŷ|x, ω) where

L(ŷ|x,ω) ≡ {
t ∈ (0,1) : m(t |x,ω) ≤ ŷ

}
,

R(ŷ|x,ω) ≡ {
t ∈ (0,1) : t ≤ �(ŷ|x,ω)

}
.

First, when ŷ = y, by the definition of M(t |x, ω) and �(y|x, ω) = 1, we have L(y|x, ω) =
R(y|x, ω) = (0, 1).

Next, consider the case where ŷ ∈ [y, y). Suppose that t ∈ L(ŷ|x, ω), i.e., m(t |x, ω) ≤ ŷ. 
If �(ŷ|x, ω) < t , by the right continuity of �, there exists y ∈ (ŷ, y) such that �(y|x, ω) < t . 
Then, y ∈ M(t |x, ω) and it contradicts ŷ = supM(t |x, ω). Therefore, we have �(ŷ|x, ω) ≥
t , which implies t ∈ R(ŷ|x, ω), and L(ŷ|x, ω) ⊆ R(ŷ|x, ω). Conversely, if t ∈ R(ŷ|x, ω), we 
have �(y|x, ω) ≥ �(ŷ|x, ω) ≥ t for all y ≥ ŷ. Thus, the upper bound of M(t |x, ω) is at most 
ŷ, i.e., ŷ ≥ m(t |x, ω). Hence, we have t ∈ L(ŷ|x, ω), and R(ŷ|x, ω) ⊆ L(ŷ|x, ω). Therefore, 
R(ŷ|x, ω) = L(ŷ|x, ω) for any ŷ ∈ Y and the distribution induced by m(τ |x, ω) is �(·|x, ω).

By the reverse monotonicity, �(y|x, ω) ≤ �(y|x, ω′) for all y ∈ Y , x ∈ X and ω, ω′ ∈ � with 
ω′ > ω. Therefore, we have M(t |x, ω′) ⊆ M(t |x, ω), and it implies m(t |x, ω) ≥ m(t |x, ω′) for 
all t ∈ (0, 1) and ω′ > ω. �

Next, by using this lemma, for any increasing decision rule ψ : Y → A on G, I construct a 
mixed-action decision rules φ : X × (0, 1) → A on F which gives a higher expected payoff than 
ψ for any state.

Proposition 6. Suppose that G is a monotone quasi-garbling of F and u satisfies the DDDR 
condition with respect to ≥A. For any increasing decision rule ψ : Y → A, there exists a mixed-
action decision rules φ : X × (0, 1) → A such that for all ω ∈ �,

19 I thank Jianrong Tian for providing this lemma.
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∫
X

⎡
⎣ 1∫

0

u(φ(x; t),ω)dt

⎤
⎦dF(x|ω) ≥

∫
Y

u(ψ(y),ω)dG(y|ω). (5.7)

Proof of Proposition 6. By the definition of F �MQG G, we have∫
Y

u(ψ(y),ω)dG(y|ω) =
∫
X

∫
Y

u(ψ(y),ω)d�(y|x,ω)dF (x|ω).

From Lemma 1, the right hand side is equal to

∫
X

⎡
⎣ 1∫

0

u(ψ(m(t |x,ω)),ω)dt

⎤
⎦dF(x|ω).

Since ψ is increasing and m is decreasing in ω, ψ(m(t |x, ω)) is decreasing in ω. (Therefore, 
ψ̃(t; x, ω) ≡ ψ(m(t |x, ω)) satisfies (5.2) for all ω ∈ � and is decreasing in ω.)

Given t and x, by the DDDR condition, there exists an action a ∈ A such that u(a, ω) ≥
u(ψ(m(t |x, ω)), ω) for all ω, and denote φ(x; t). Then, by using the inequalities for each t and 
x, we can derive (5.7). �

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Fix a prior belief � ∈ �(�) and a payoff function u ∈ U . Let a∗
G : Y → A

be the optimal decision function defined in the MCS condition: a∗
G(y) ∈ A∗

G,�(y) and a∗
G(y) ≥A

a∗
G(y′) for all y ≥ y′. By Proposition 6, there exists a mixed-action decision rules φ : X × (0, 1)

satisfying (5.7). Then, we have

V (G;u,�) =
∫
�

∫
Y

u(a∗
G(y),ω)dG(y|ω)d�(ω)

≤
∫
�

∫
X

⎡
⎣ 1∫

0

u(φ(x; t),ω)dt

⎤
⎦dF(x|ω) d�(ω)

=
1∫

0

⎡
⎣∫

X

∫
�

u(φ(x; t),ω)d�x
F (ω)dF�(x)

⎤
⎦dt

≤
∫
X

∫
�

u(a∗
F (x),ω)d�x

F (ω)dF�(x) = V (F ;u,�).

The third equality is simply from rearranging the integration order. The fourth inequality holds 
from the optimality of a∗

F (x), and the last equality is straightforward. Therefore, F is more 
informative than G on U . �
Remark 2. Proposition 6 is closely related to Proposition 9 of Quah and Strulovici (2009). Their 
result is stronger in the sense that they show that there exists an increasing pure-action decision 
rule φ : X → A (rather than a mixed-action decision rules which are not necessarily increasing) 
such that 

∫
u(φ(x), ω)dF(x|ω) ≥ ∫

u(ψ(y), ω)dG(y|ω) for all ω ∈ �. This is because their 

X Y

15



Y. Kim Journal of Economic Theory 211 (2023) 105679
assumptions are stronger than the ones on Proposition 6: they impose the interval dominance 
order condition on the payoff function which is stronger than the DDDR condition; and they 
also assume that F is more Lehmann accurate than G, which is also stronger than the monotone 
quasi-garbling order in the absence of the MLRP.

6. Application: nonlinear monopoly pricing

As an application of general monotone decision problems, I investigate information ranking in 
the context of monopoly pricing with second-degree price discrimination as in Maskin and Riley 
(1984). In this section, I review their model and basic results and rewrite them in the grammar of 
Section 5.20

A risk-neutral monopolistic seller that possesses full power of commitment wishes to sell 
output to a single buyer. The buyer has a privately known type ω ∈ � = {ω1, · · · , ωN } with 
ωn < ωn+1. In the first stage of the game, the seller chooses between two sources of information 
about the buyer’s type. Next, the signal is received from the chosen information source and the 
seller updates the belief on the buyer’s type. Then, the seller posts a menu of quantities and tariffs 
(non-linear prices). In the last stage, the buyer selects an element from the menu or decides not 
to participate. The outside option of both parties yields a payoff of zero.

Let the utility of a type ω buyer from consuming q units of the good and paying p units of 
money be v(q, ω) −p. Let the cost function of the seller be some c : R+ → R+, then the seller’s 
payoff would be p − c(q).21 I assume some standard conditions on c and v.

Assumption. The seller’s cost function c : R+ → R+ and the buyer’s utility function v : R+ ×
� →R satisfy the following properties:

1. v is continuous, increasing in ω, and supermodular in (q, ω), i.e., v(q ′, ω′) − v(q, ω′) ≥
v(q ′, ω) − v(q, ω) for all q ′ ≥ q ≥ 0 and ω′ > ω. In addition, v(0, ω) = 0 for all ω ∈ �.

2. c is continuous in q with c(0) = 0;
3. there exists Q > 0 such that v(Q, ω) − c(Q) < 0 for all ω ∈ �.

The seller has a prior belief � ∈ �(�) with a corresponding probability mass function λ. 
After receiving a signal about the buyer’s type, the seller forms a posterior belief and sets pricing 
options {�q(ω), �p(ω)}ω∈� based on the updated belief. The set of actions can be viewed as a 
subset of [0, Q]N ×RN+ .

A pricing option (�q, �p) can be implemented if and only if it satisfies the following familiar 
constraints: for all ω, ω′ ∈ �,

v(�q(ω),ω) − �p(ω) ≥ v(�q(ω′),ω) − �p(ω′), (IC)

v(�q(ω),ω) − �p(ω) ≥ 0. (IR)

20 Comparison of information structures for monopoly pricing has also been studied by Athey and Levin (2017) and 
Ottaviani and Prat (2001). Athey and Levin applied their result in a setting where the seller receives a signal about the 
buyer’s type and determines the simple monopoly price and there is no second-degree price discrimination. In the study 
by Ottaviani and Prat, both the seller and the buyer receive a signal about the buyer’s type and the seller offers a nonlinear 
price. The setup in this section is a mixture of these two models: the buyer is fully aware of her type, the seller receives 
a signal about the buyer’s type and then a menu of nonlinear prices is offered.
21 Note that in this example, the seller’s utility itself is not dependent on ω. However, different payoffs across states 
arise from price discrimination.
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Therefore, the set of feasible decisions is

AM =
{
(�q, �p) ∈ [0,Q]N ×RN+

∣∣∣ (�q, �p) satisfies ICs and IRs
}

. (6.1)

I call that an information F has the full support if f (x|ω) > 0 for all x ∈ X and ω ∈ �. 
Likewise, I call that a prior belief � has the full support if λ(ω) > 0 for all ω ∈ �. Then, upon 
receiving a signal x, the probability mass of the posterior belief is λx

F (ω) > 0 for all ω ∈ �. 
This is essential for the further argument because if λx

F (ω) = 0 for some ω ∈ �, the seller would 
ignore some ICs and IRs and suggest a menu of pricing which might not be in AM . Under the 
full support assumption, the seller’s problem is

max
(�q, �p)∈AM

N∑
n=1

[−c(�q(ωn)) + �p(ωn)
] · λx

F (ωn). (6.2)

It is well known that an allocation �q is implementable iff �q is monotone, and all the local 
downward ICs and IR for the lowest type are binding at the solution of (6.2) (Maskin and Riley 
(1984), Guesnerie and Laffont (1984)). That is, the optimal pricing policy given the quantity 
allocation �q is as follows: for all 1 ≤ n ≤ N ,22

�p(ωn) = v(�q(ωn),ωn) −
n−1∑
i=1

[
v(�q(ωi),ωi+1) − v(�q(ωi),ωi)

]
. (6.3)

In addition, we can restrict attention to the set of decisions Q:

Q =
{
�q ∈ [0,Q]N ∣∣ for all 1 ≤ i ≤ j ≤ N, �q(ωj ) ≥ �q(ωi)

}
. (6.4)

By plugging (6.2) into the seller’s payoff function, define

u(�q,ωn) ≡ v(�q(ωn),ωn) −
n−1∑
i=1

[
v(�q(ωi),ωi+1) − v(�q(ωi),ωi)

]− c(�q(ωn)). (6.5)

Then, we can rewrite (6.2) as max�q∈Q U(�q; x) where

U(�q ;x) =
N∑

n=1

u(�q,ωn) · λx
F (ωn). (6.6)

Under the optimal mechanism, no matter what the seller’s belief is, quantities for higher types 
are almost as high as the first best quantity. However, quantities for lower types serve as a tool 
for incentivizing not only the lower types of the buyer but also higher types through the pricing 
policy (6.3). From the supermodularity of v, we observe that reducing a quantity for a low type 
buyer would induce a price increase for a high type buyer. Note that if the seller believes that 
the buyer is more likely to be a high type, then the seller would be less concerned about the 
possibility of distorting the quantities designed for low types in order to raise the prices for high 
types.

Using this intuition, consider a partial order ≥Q on Q defined as follows: for any �qi, �qj ∈Q,

�qj ≥Q �qi ⇐⇒ �qj (ω) ≤ �qi(ω) ∀ ω ∈ �. (6.7)

22 Note that the IR for the lowest type binds, i.e., �p(ω1) = v(�q(ω1), ω1).
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The next lemma justifies this partial order by showing that the payoff function satisfies the DDDR 
condition with respect to this partial order.

Lemma 2. Assume that v is supermodular in (q, ω). The payoff function defined in (6.5) satisfies 
the DDDR condition with respect to the partial order ≥Q defined in (6.7).

The next task is to check the MCS condition. I use a similar argument as in the latter part 
of Section 5.1: (i) show that U(�q ; x) is supermodular in Q; (ii) also show that U(�q ; x′′) I-
dominates U(�q ; x′) for all x′′ > x′; then (iii) apply Theorem 1 of Quah and Strulovici (2007).2324

I begin by showing that Q is a lattice. Observe that �qi ∨ �qj = (min{�qi(ω), �qj (ω)})ω∈� and 
�qi ∧ �qj = (max{�qi(ω), �qj (ω)})ω∈� under this partial order.25 When �qi and �qj are in Q, i.e., 
they are increasing in ω, min{�qi, �qj } and max{�qi, �qj } are increasing in ω as well. Thus, �qi ∨
�qj and �qi ∧ �qj are in Q, i.e., Q is a lattice. For any function w : R → R, we have w(a) +
w(b) = w(max{a, b}) + h(min{a, b}). By using this to v(·, ω) and c(·), we can easily derive that 
u(�qi, ωn) + u(�qj , ωn) = u(�qi ∨ �qj , ωn) + u(�qi ∧ �qj , ωn), thus, u is supermodular in Q. Since 
U(�q ; x) is a convex combination of u(�q, ω), U(�q ; x) is also supermodular in Q.

Next, the following lemma shows that U(�q ; x′′) I-dominates U(�q ; x′) when the MLRP con-
dition is imposed. The proof is provided in Appendix D.3.

Lemma 3. Suppose that an information structure F satisfies the MLRP and has the full sup-
port, and the prior belief � has the full support. Then, for any x′′ > x′, U(�q ; x′′) I-dominates 
U(�q ; x′).

Now we are ready to show that the monotone quasi-garbling order can be served as a criterion 
for comparing information in the nonlinear monopoly pricing problem.

Proposition 7. Suppose that assumptions 1-4 hold for (v, c), F and G have full support, G
satisfies the MLRP, and G is a monotone quasi-garbling of F . Then, the seller prefers F to G
for any prior belief � with full support.

Proof. By Lemma 2, the payoff function u defined in (6.5) satisfies the DDDR condition. Next, 
under the assumption that G satisfies the MLRP, since U(�q ; y) is supermodular in Q and 
U(�q ; y′′) I-dominates U(�q ; y′) for all y′′ > y′, by Theorem 1 of Quah and Strulovici (2007), 
the MCS condition holds: there exists �q∗ : Y → Q such that �q∗(y′′) ≥A �q∗(y′) for all y′′ > y′. 
Therefore, the seller’s problem is generally monotone with respect to G. Then, when G is a 
monotone quasi-garbling of F , by Theorem 2, we have V (F ; u, �) ≥ V (G; u, �). �
23 This argument is slightly different from Section 5.1 in the second step. In Section 5.1, I use the IDO condition for the 
payoff function u to show that u satisfies the DDDR condition and U(�q ; x′′) I-dominates U(�q ; x′). In this example, I 
directly show these properties in Lemma 2 and 3.
24 The proof of the MCS result in the previous version of the paper was based on the first-order condition and the 
ironing technique with stronger conditions on the primitives. The interval-dominance-order-based argument presented in 
this version is due to Jianrong Tian, which not only weakens the conditions in the previous version, but also substantially 
simplifies the proof.
25 Note that it is opposite from the case with the usual product order of which inequality is reversed from (6.7).
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7. Conclusion

In this paper, I develop the concept of the monotone quasi-garbling order, which implies that 
one information structure is obtained from another by adding reversely monotone noise. I show 
that this ordering is equivalent to Lehmann’s accuracy condition under the MLRP. I also show 
that this order is a necessary and sufficient condition for informativeness in general classes of 
monotone decision problems where the decision maker is allowed to choose a multidimensional 
action. I illustrate this result in decision problems of optimal insurance and nonlinear monopoly 
pricing.

The general setup presented here can be applied to conduct research on information com-
parisons in many other economic contexts. For example, as in the nonlinear monopoly pricing 
application, many mechanism design problems can be recast as general monotone decision prob-
lems amenable to analysis via the methods presented in this paper.
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Appendix A. Details for relationship among criteria

A.1. Proof of Proposition 3

Proof of Proposition 3. Suppose that F �L G does not hold, i.e., there exists ω′ > ω and 
y ∈ Y such that �(ω′; y) < �(ω; y). Since F �MQG G, there exists � such that G(y|ω) =∫ x

x
�(y|x, ω)dF(x|ω) and �(·|x, ω) ≥FOSD �(·|x, ω′) for all ω′ > ω. Also note that G(y|ω) =

F(�(ω; y)|ω) = ∫ �(ω;y)

x
dF (x|ω). Then, we can rewrite G(y|ω) = ∫ x

x
�(y|x, ω)dF(x|ω) =∫ �(ω;y)

x
dF (x|ω) as follows:

�(ω;y)∫
x

(1 − �(y|x,ω))dF (x|ω) =
x∫

�(ω;y)

�(y|x,ω)dF (x|ω). (A.1)

Suppose that (A.1) is equal to zero. Since 1 ≥ �(y|x, ω) ≥ 0 for all x, it implies that 
�(y|x, ω) = 1 a.e. for x ≤ �(ω; y), and �(y|x, ω) = 0 a.e. for x > �(ω; y). Observe that, by 
�(·|x, ω) ≥FOSD �(·|x, ω′), �(y|x, ω′) = 1 a.e. for x ≤ �(ω; y). Then, we have

G(y|ω′) =
x∫

x

�(y|x,ω′)dF (x|ω′) ≥ F(�(ω;y)|ω′),

which implies �(ω′; y) = sup{x | F(x|ω′) ≤ G(y|ω′)} ≥ �(ω; y) contradicting �(ω′; y) <
�(ω; y). Therefore (A.1) is nonzero.
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Note that⎛
⎜⎝

x∫
�(ω;y)

�(y|x,ω)dF (x|ω)

⎞
⎟⎠ ·

⎛
⎜⎝

�(ω;y)∫
x

(1 − �(y|x,ω))dF (x|ω′)

⎞
⎟⎠

=
x∫

�(ω;y)

�(ω;y)∫
x

�(y|x,ω)(1 − �(y|x,ω))dF (x|ω)dF(x′|ω′)

≤
x∫

�(ω;y)

�(ω;y)∫
x

�(y|x,ω)(1 − �(y|x,ω))dF (x′|ω)dF(x|ω′)

=
⎛
⎜⎝

x∫
�(ω;y)

�(y|x,ω)dF (x|ω′)

⎞
⎟⎠ ·

⎛
⎜⎝

�(ω;y)∫
x

(1 − �(y|x,ω))dF (x|ω)

⎞
⎟⎠

where the inequality is derived by doubly integrating the MLRP conditions multiplied by 
�(y|x, ω)(1 − �(y|x′, ω)).

By canceling terms by using (A.1), we can derive that

F(�(ω;y)|ω′) =
�(ω;y)∫

x

dF (x|ω′) ≤
x∫

x

�(y|x,ω)dF (x|ω′).

Also from �(y|x, ω) ≤ �(y|x, ω′) for all x ∈ X,

x∫
x

�(y|x,ω)dF (x|ω′) ≤
x∫

x

�(y|x,ω′)dF (x|ω′) = G(y|ω′).

Then, the above two inequalities imply F(�(ω; y)|ω′) ≤ G(y|ω′), thus, �(ω′; y) ≥ �(ω; y)

contradicting �(ω′; y) < �(ω; y). Therefore, F �L G holds. �
A.2. An illustrative example on information ranking

In this section, I provide an illustrative example that is discussed in Section 4. Let the state 
space be � ≡ [0, 4]. I construct a triplet of information structures, F , G and H where their 
signal spaces are X = Y = [−1, 1] and Z = [−2, 2], and their probability distribution functions 
are given as in Fig. 2. Observe that F and G satisfy the MLRP, but H does not.

In the subsequent subsections, I show the following statements which are summarized in 
Fig. 3.

1. G is neither a garbling of F nor H , but F is a garbling of G (F�
B
G, H�

B
G, but F �B G);

2. H is more Lehmann accurate than neither F nor G, but F is more Lehmann accurate than 
G (H�

L
F , H�

L
G, but F �L G);

3. G is a monotone quasi-garbling of H and F, and F is a monotone quasi-garbling of H
(H �MQG F , H �MQG G, and F �MQG G).
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ω\ signal

ω ∈ [3,4]
ω ∈ [2,3)

ω ∈ [1,2)

ω ∈ [0,1)

h(z|ω)

[−2,−1) [−1,0) [0,1) [1,2]
1/2 1/2 0 0

1/2 0 1/2 0

0 1/2 0 1/2

0 0 1/2 1/2

f (x|ω)

[−1,0) [0,1]
1 0

1/2 1/2

1/2 1/2

0 1

g(y|ω)

[−1,0) [0,1]
5/6 1/6

2/3 1/3

2/3 1/3

1/3 2/3

Fig. 2. An example of information structures.

H

F

G

�
B,M

QG

�
L

�L,M
QG

�B

�B,L

�MQG

Fig. 3. Relationship among criteria in the example.

A.2.1. Blackwell’s garbling condition
First, I show that G is a garbling of neither F nor H by showing that there exists a prior belief 

� and a utility function u such that V (G; u, �) > V (F ; u, �) = V (H ; u, �). Consider a case 
where a prior � is uniformly distributed, A = [0, 1] and utility function u : A × � → R is linear 
in a, i.e., u(a, ω) = a ·u(1, ω) + (1 −a) ·u(0, ω), and u(1, ω) and u(0, ω) are defined as follows:

u(1,ω) =
{

1, if ω ∈ [1,3),

0, otherwise,
u(0,ω) =

{
0, if ω ∈ [1,3),

1, otherwise.

Observe that the DM’s optimal decision is determined by the posterior belief that the state 
is in [1, 3). Under the information structure F and H , the posterior belief that the state is in 
[1, 3) is 1/2 for any signal realization. Therefore, V (F ; u, �) = V (H ; u, �) = 1/2. Under the 
information structure G, if he receives a negative signal, which happens at probability 15/24, the 
posterior belief that the state is in [1, 3) is 8/15. In this case, it is optimal to choose a = 1 and the 
expected utility is 8/15. If he receives a nonnegative signal, which happens at probability 9/24, 
the posterior belief that the state is in [1, 3) is 4/9. In this case, it is optimal to choose a = 0 and 
the expected utility is 5/9. Then, we have

V (G;u,�) = 15

24
· 8

15
+ 9

24
· 5

9
= 13

24
>

1

2
= V (F ;u,�) = V (H ;u,�).

Therefore, G is a garbling of neither F nor H , i.e., F�
B
G and H�

B
G.

Next, I show that F is a garbling of H by constructing a noise � : Z → �(X). Consider �
derived from the following probability distribution function:
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γ (x|z) =
x < 0 x ≥ 0

z < 0 1 0
z ≥ 0 0 1

.

By simple algebra, we can see that f (x|ω) = ∫ 2
−2 γ (x|z)h(z|ω)dz for all ω ∈ �. Therefore, F is 

a garbling of H , i.e., H �B F .

A.2.2. Lehmann’s accuracy condition
I show that H is not more Lehmann accurate than F by finding a signal x and a pair of states 

(ω, ω′) such that ω′ > ω and �(ω; x) > �(ω′; x). Consider x = 0, ω = 0, and ω′ = 1. Observe 
that

�(0;0) = sup{z |H(z|0) ≤ F(0|0) = 1} = 2,

�(1;0) = sup{z |H(z|1) ≤ F(0|1) = 1/2} = 0,

thus, �(0; 0) > �(1; 0) and H�
L
F .

Likewise, I show that H is not more Lehmann accurate than G by considering y = 0, ω = 2
and ω′ = 3:

�(2;0) = sup{z |H(z|2) ≤ G(0|2) = 2/3} = 4/3,

�(3;0) = sup{z |H(z|3) ≤ G(0|3) = 1/3} = 2/3.

Last, I show that F is more Lehmann accurate than G. With simple algebra, we can derive �
as follows.

1. When ω ∈ [0, 1),

�(ω;y) =

⎧⎪⎨
⎪⎩

5
6y − 1

6 , if − 1 ≤ y < 0,
1
6y − 1

6 , if 0 ≤ y < 1,

2, if y = 1.

2. When ω ∈ [1, 3),

�(ω;y) =
{

4
3y + 1

3 , if − 1 ≤ y < 0,
2
3y + 1

3 , if 0 ≤ y ≤ 1.

3. When ω ∈ [3, 4],

�(ω;y) =
{

1
3y + 1

3 , if − 1 ≤ y < 0,
2
3y + 1

3 , if 0 ≤ y ≤ 1.

Fig. 4 illustrates the above results. As we can see in the figure, �(ω; y) is increasing in ω. 
Therefore, F is more Lehmann accurate than G.

A.2.3. Monotone quasi-garbling order
Since Blackwell’s garbling condition implies the monotone quasi-garbling order, we have 

H �MQG F . We also have F �MQG G because Lehmann’s accuracy condition also implies the 
monotone quasi-garbling order (Proposition 2). It remains to show that G is a monotone quasi-
garbling of H . I construct a reversely monotone noise � : Z × � → �(Y) derived from the 
following probability distribution functions:
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Fig. 4. Lehmann Accuracy Condition for F and G.

1. if ω ∈ [0, 1),

γ (y|z, ω) =

y < 0 y ≥ 0
z ∈ [−2,−1) 1 0
z ∈ [−1,0) 2/3 1/3
z ∈ [0,1) 0 1
z ∈ [1,2] 0 1

,

2. if ω ∈ [1, 2),

γ (y|z, ω) =

y < 0 y ≥ 0
z ∈ [−2,−1) 1 0
z ∈ [−1,0) 2/3 1/3
z ∈ [0,1) 1/3 2/3
z ∈ [1,2] 0 1

,

3. if ω ∈ [2, 4],

γ (y|z, ω) =

y < 0 y ≥ 0
z ∈ [−2,−1) 1 0
z ∈ [−1,0) 1 0
z ∈ [0,1) 1/3 2/3
z ∈ [1,2] 1/3 2/3

.

With simple algebra, we can show that g(y|ω) = ∫ 2
−2 γ (y|z, ω)h(z|ω)dz holds for all y ∈ Y

and ω ∈ �. In addition, we can also see that �(y|x, ω) ≤ �(y|x, ω′) for all y ∈ Y , x ∈ X, and 
ω < ω′, i.e., � is a reversely monotone noise. Therefore, G is a monotone quasi-garbling of H , 
i.e., H �MQG G.
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Fig. 5. Illustration of dominated decreasing decision rules, where the interval dominance property is violated.

Appendix B. An example on IDO and DDDR conditions

In this section, I provide an example of a decision problem that does not satisfy the IDO 
condition but is generally monotone with respect to any information structure with the MLRP. 
Let � = {ω1, ω2} and A = [0, 6]. Consider a usual order in A. Define a payoff function u :
A × � →R as follows:

u(a,ω1) ≡

⎧⎪⎨
⎪⎩

a + 1, if a ≤ 2,

5 − a, if 2 < a ≤ 5,

a − 5, if 5 < a,

u(a,ω2) ≡

⎧⎪⎨
⎪⎩

0, if a ≤ 1,

a − 1, if 1 < a ≤ 4,

5 − a, if 4 < a.

This function is illustrated in Fig. 5.
First, observe that this function does not satisfy IDO condition: u(6, ω1) > u(a, ω1) for all 

5 ≤ a < 6, but u(6, ω2) < u(5, ω2). Now I show that it satisfies the DDDR condition. Con-
sider any decreasing function h : � → A. When h(ω1) ≤ 4, set â = h(ω1). Then, u(â, ω1) =
u(h(ω1), ω1) by definition of â, and u(â, ω2) = u(h(ω1), ω2) ≥ u(h(ω2), ω2) since u(a|ω2)

is increasing in a when a < 4. When h(ω1) > 4, set â = 4. Then, u(â, ω1) ≥ u(h(ω1), ω1)

since u(4, ω1) ≥ u(a, ω1) for all a ≥ 4. In addition, u(a, ω2) is maximized at a = 4, thus, 
u(â, ω2) ≥ u(h(ω2), ω2). Therefore, this decision problem satisfies the DDDR condition with 
respect to the generic order.

Now I show that it satisfies the MCS condition. Observe that for any a < 2 and ω, u(a, ω) <
u(2, ω). Similarly, for any a ≥ 4, u(a, ω) ≤ u(4, ω). Therefore, it is without loss to focus on 
a ∈ [2, 4]. Let the posterior belief given a signal x be ψx = Pr(ω2|x) and 1 − ψx = Pr(ω1|x). 
Then, the expected payoff given the signal x is

ψx(a − 1) + (1 − ψx)(5 − a) = (2ψx − 1)a + 5 − 6ψx.

Therefore, the optimal action given x is
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a∗(x) =
{

4, if ψx ≥ 1/2,

2, if ψx ≤ 1/2.

Also observe that for any information structure with the MLRP, prior belief and pair of signals 
(x′, x) with x′ > x, the posterior belief on ω2 is increasing, i.e., ψx′ ≥ ψx . Therefore, a∗(x) is 
increasing in x, thus, the MCS condition holds.

Appendix C. Application: optimal insurance

I now present a familiar economic application that can be considered a general monotone de-
cision problem. Specifically, I consider an optimal insurance problem similar to the investment 
problem studied by Cabrales et al. (2013). An agent (DM) privately acquires information about a 
future state ω ∈ � = {ω1, · · · , ωN }, which will be his realized income, with ωN > · · · > ω1 > 0. 
At the beginning of the investment decision, the agent chooses between two sources of informa-
tion, say F and G. The agent receives a signal from the chosen source. After receiving a signal 
(and before the realization of the state), the agent can buy or sell Arrow securities. Assume that 
the Arrow security market is large enough so that the agent’s demand does not affect prices. Let 
the price vector be p = (p1, · · · , pN) and assume that 

∑N
i=1 pi = 1 and pi > 0.

In this example, an action by the agent is the number of securities bought (or sold) for each 
state, thus, the action space is multidimensional. For any 1 ≤ i ≤ N , denote the amount of se-
curities bought for a state ωi by qi . By allowing a short sale, qi can be negative. Assume that 
the agent is not allowed to execute a short sale more than his realized income, i.e., qi + ωi ≥ 0
for all 1 ≤ i ≤ N . Along with these constraints, the agent’s budget constraint determines the set 
of feasible decisions. By assuming the agent’s budget is zero, i.e., he must finance purchases 
through short sales, we get the set of feasible decisions as follows:

A = {
q = (q1, · · · , qn) ∈ Rn |p · q ≤ 0 and ωi + qi ≥ 0 ∀i ∈ N

}
. (C.1)

Also note that the budget constraint will bind at the optimum and define the set of budget binding 
decisions as follows:

A′ = {
q = (q1, · · · , qn) ∈Rn |p · q = 0 and ωi + qi ≥ 0 ∀i ∈ N

}
. (C.2)

For the agent’s utility function, assume constant relative risk aversion (CRRA) preferences 
with respect to the realized net income26:

U ≡
{
u : A2 × � →R : u(q,ωi) = v(ωi + qi) ∀1 ≤ i ≤ N,

∃ ρ > 0 s.th. v(z) = (z1−ρ − 1)/(1 − ρ)

}
. (C.3)

Next I define a partial order ≥A on A. Recall that the purpose of this order is to compare the 
optimal actions, thus it only needs to be defined over A′ ⊂ A. I construct the partial order as 
follows: for any q, q ′ ∈ A′,

q ′ ≥A q ⇔ ωj + q ′
j

ωi + q ′
i

≥ ωj + qj

ωi + qi

for all j > i. (C.4)

This definition is inspired by the following equation holding at the optimum bundle: for any 
i < j ,

26 When ρ = 1, v(z) = log(z).
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Pr(ωi) · v′(ωi + qi)

Pr(ωj ) · v′(ωj + qj )
= pi

pj

. (C.5)

This equation says that the (expected) marginal rate of substitution of every pair of states is equal 
to the price ratio. Observe that when a bundle q ′ is higher than another bundle q in the order ≥A, 
the left hand side of (C.5) increases. Suppose that the DM receives a higher signal that leads to 
a fall in the likelihood ratio Pr(ωi)/ Pr(ωj ) in (C.5). Since the price ratio is assumed to be fixed, 
i.e., the right hand side of (C.5) is unchanged, the DM would choose a higher bundle in terms of 
≥A. In this sense, the order ≥A is reasonable in this example. The following proposition shows 
that this insurance problem is a general monotone decision problem with this order.

Proposition 8. The following statements hold:

(a) The partial order ≥A defined on (C.4) satisfies the DDDR condition for the set of payoff 
functions U defined on (C.3);

(b) Suppose that an information structure f satisfies the MLRP. Then, f satisfies the MCS con-
dition with respect to U and ≥A.

Proof of Proposition 8. (a) Consider a decreasing decision rule {qj }j∈N ∈ (A′)n where q1 ≥A

· · · ≥A qn. Define q̂i ≡ qi
i and q̂ = (q̂1, · · · , q̂n). To check whether ≥A satisfies the DDDR 

condition for U , it is enough to show that q̂ ∈ A since for any u ∈ U , there exists a function 
v such that u(q̂, ωi) = v(q̂i + ωi) = v(ai

i + ωi) = u(qi, ωi) for all 1 ≤ i ≤ N . Note that 
ωi + q̂i = ωi + qi

i ≥ 0 from qi ∈ A′. Therefore, it suffices to show that p · q̂ ≤ 0.

For all 1 ≤ i, j ≤ N , define rj
i ≡ pi(ωi + q

j
i )/(

∑n
s=1 psωs) and rj ≡ {rj

i }1≤i≤N . Note that ∑
i∈N r

j
i = 1 from qj ∈ A′, thus, rj can be considered an element of �(�). Moreover, the 

condition (C.4) makes {rj }j∈N reversely MLRP ordered, i.e., r1 ≥MLRP · · · ≥MLRP rn. 
Therefore, r1 ≥FOSD · · · ≥FOSD rn. Then, the following inequalities hold:

1 = rn
1 + rn

2 + · · · + rn
n−2 + rn

n−1 + rn
n

≥ (rn−1
1 + rn−1

2 + · · · + rn−1
n−2 + rn−1

n−1 ) + rn
n (by rn−1 ≥FOSD rn)

≥ (rn−2
1 + rn−2

2 + · · · + rn−2
n−2 ) + rn−1

n−1 + rn
n (by rn−2 ≥FOSD rn−1)

...

≥ r1
1 + r2

2 + · · · rn−2
n−2 + rn−1

n−1 + rn
n (by r1 ≥FOSD r2)

=
∑
i∈N

pi(ωi + q̂i )∑n
s=1 psωs

From the last inequality, 0 ≥∑
i∈N piq̂i = p · q̂ . Therefore, ≥A satisfies the DDDR condition 

for U .
(b) Fix a prior belief � ∈ �(�) and a utility function u ∈ U with u(q, ωi) = v(ωi + qi) and 

v(z) = z1−ρ/(1 − ρ) for some ρ > 0. In the third stage with the signal x, DM’s problem is

max
q∈A

∑
i∈N

λx
F (ωi)v(ωi + qi). (C.6)

When an information structure is {f (·|ω)}ω∈� and the agent receives x as a signal, let the 
solution of (C.6) be {qi(x)}i∈N . Note that the solution can be obtained as follows:
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ωi + qi(x) =
(

λx
F (ωi)

pi

)1/ρ

·
∑n

s=1 ωs · ps∑n
s=1 λx

F (ωs)1/ρ · ps
1−1/ρ

, (C.7)

for all i ∈ N .
Assume that an information structure F satisfies the MLRP. By Milgrom (1981), the poste-
rior belief also shows the MLRP, that is, for all x′ > x and j > i,

λx′
F (ωj )λ

x
F (ωi) − λx

F (ωj )λ
x′
F (ωi) ≥ 0 ⇔ λx′

F (ωj )

λx
F (ωj )

≥ λx′
F (ωi)

λx
F (ωi)

. (C.8)

We see that this condition represents the intuition that with a lower signal, a lower state is 
more likely to happen and with a higher signal, a higher state is more likely to happen. Note 
that from (C.7),

ωj + qj (x
′)

ωj + qj (x)
≥ ωi + qi(x

′)
ωi + qi(x)

⇔ λx′
F (ωj )

1/ρ

λx
F (ωj )1/ρ

≥ λx′
F (ωi)

1/ρ

λx
F (ωi)1/ρ

, (C.9)

and it holds from (C.8). Therefore, we can see that

{qi(x
′)}1≤i≤N ≥A {qi(x)}1≤i≤N

for all x′ > x and the MCS condition holds. �
Proposition 9 (Informativeness in the optimal insurance problem ). In the optimal insurance 
problem, if G satisfies the MLRP and G is a monotone quasi-garbling of F , then the decision 
maker obtains greater expected utility in the first stage from F than from G for all priors.

Proof of Proposition 9. When G satisfies the MLRP, by Proposition 8, U is a general monotone 
decision problem with respect to G. Since G is a monotone quasi-garbling of F , by Theorem 2, 
the expected payoff from F is greater than that from G. �
Appendix D. Omitted proofs

D.1. Proof of Theorem 3

I focus on information structures with which decision problems in U are generally monotone. 
To qualify that a decision problem in U is generally monotone, we first need to check whether the 
DDDR condition holds. The following lemma confirms this, and the proof of Theorem 3 follows.

Lemma. The generic order on A satisfies the DDDR condition with respect to U .

Proof. Observe that any decreasing decision rule h : � → A has a following structure:

h(ω) =
{

1, ω < ω̃,

0, ω ≥ ω̃.

When ω̃ ≤ ω̂, observe that

u(h(ω),ω) =
{

u(1,ω) = −κ ≤ 0 = u(0,ω), if ω < ω̃ ≤ ω̂,

u(0,ω) = 0 ≤ 0 = u(0,ω), if ω̃ ≤ ω.
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Thus, h(ω) is dominated by the constant action a = 0.
When ω̃ > ω̂, observe that

u(h(ω),ω) =

⎧⎪⎨
⎪⎩

u(1,ω) = −κ ≤ −κ = u(1,ω), if ω < ω̂ < ω̃,

u(1,ω) = 1 − κ ≤ 1 − κ = u(1,ω), if ω̂ ≤ ω < ω̃,

u(0,ω) = 0 ≤ 1 − κ = u(1,ω), if ω̂ < ω̃ ≤ ω.

Thus, h(ω) is dominated by the constant action a = 1. �
Proof of Theorem 3. First, I show that F satisfies the MLRP. I fix a pair of signals x0 < x1 and 
a pair of states ω0 < ω1 and show that f (x1|ω1) · f (x0|ω0) ≥ f (x1|ω0) · f (x0|ω1). Consider a 
prior belief � ∈ �(�) such that there are probability masses 1/2 on ω0 and ω1. Observe that 
the posterior belief has probability masses λ̃F (x) ≡ f (x|ω1)/(f (x|ω0) + f (x|ω1)) on ω1 and 
1 − λ̃F (x) on ω0.27 For the utility function, set ω̂ = ω1. Then, upon receiving a signal x, the DM 
solves the following problem:

max
a∈{0,1}

∫
�

u(a,ω)d�x
F (ω) = max

a∈{0,1}a
[
−κ · (1 − λ̃F (x)) + (1 − κ) · λ̃F (x)

]

= max
a∈{0,1}a

(
λ̃F (x) − κ

)
.

Note that a = 1 solves the above maximization problem if and only if κ ≤ λ̃F (x). Consider 
κ = λ̃F (x0) − ε for some ε > 0. Then, a = 1 is the only optimal choice under a signal x0. 
To satisfy the MCS condition, a = 1 also needs to be a solution under a signal x1. It implies 
that λ̃F (x1) ≥ κ = λ̃F (x0) − ε. By sending ε to zero, we can derive that λ̃F (x1) ≥ λ̃F (x0). By 
rearranging the terms, we can derive that f (x1|ω1) ·f (x0|ω0) ≥ f (x0|ω1) ·f (x1|ω0). Therefore, 
F satisfies the MLRP.

Now I show that F �L G, i.e., �(ω1; ŷ) ≥ �(ω0; ŷ) for all ω1 > ω0 and ŷ ∈ Y . Set ω̂ = ω1, 
and κ = λ̃F (�(ω0; ŷ)). By the MLRP of F , we have{

λ̃F (x) ≥ κ, if x ≥ �(ω0; ŷ),

λ̃F (x) < κ, otherwise.

Recall that a = 1 will be chosen if and only if κ ≤ λ̃F (x), i.e., x ≥ �(ω0; ŷ). Also note that 
F�(x) = (F (x|ω0) + F(x|ω1))/2 and λ̃F (x) · dF�(x) = f (x|ω1)/2. Then, we can derive that

V (F ;u,�) =
x∫

�(ω0;y)

(
λ̃F (x) − κ

)
dF�(x)

=1 − κ

2

(
1 − F(�(ω0; ŷ)|ω1)

)− κ

2

(
1 − F(�(ω0; ŷ)|ω0)

)
.

Next, observe that

27 This is the case when there is no probability mass at x neither at the state ω0 nor at the state ω1. If there is a 
probability mass at either state, ˜λF should be defined by λ̃F (x) = Pr(x|ω1)/(Pr(x|ω0) + Pr(x|ω0)) where Pr(x|ω) ≡
F(x|ω) − F(x−|ω).
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V (G;u,�) =
y∫

y

[
max

a∈{0,1}a ·
(
λ̃G(y) − κ

)]
dG�(y)

≥
y∫

ŷ

(
λ̃G(y) − κ

)
dG�(y)

= 1 − κ

2

(
1 − G(ŷ|ω1)

)− κ

2

(
1 − G(ŷ|ω0)

)
.

Since F is more informative than G on U and u ∈ U ⊆ U , we have V (F ; u, �) ≥ V (G; u, �)

which implies

(1 − κ)
(
G(ŷ|ω1) − F(�(ω0; ŷ)|ω1)

)≥ κ
(
G(ŷ|ω0) − F(�(ω0; ŷ)|ω0)

)
.

Note that the right hand side is equal to zero by the definition of �(ω0; ŷ). Then, we have 
G(ŷ|ω1) ≥ F(�(ω0; ŷ)|ω1), which implies �(ω1; ŷ) ≥ �(ω0; ŷ). Therefore, F �L G, and by 
Proposition 2, we have F �MQG G. �
D.2. Proof of Lemma 2

Proof of Lemma 2. Consider any {q(ω; s)}(ω,s)∈�×� ∈ QN such that for all s′ > s

{q(·; s)} ≥Q {q(·; s′)},
i.e., q(ω; s′) ≥ q(ω; s) for all s′ > s and ω ∈ �. Then, I consider q̂(·) defined by q̂(ω) ≡ q(ω; ω). 
Observe that for any ω′ > ω, we have

q̂(ω′) = q(ω′;ω′) ≥ q(ω′;ω) ≥ q(ω;ω) = q̂(ω).

The first inequality holds from the definition of ≥Q and the second inequality holds since q(ω̃; ω)

is increasing in ω̃. Therefore, q̂(·) is increasing and q̂(·) ∈ Q.
Next, I show that u(q̂(·), ω) ≥ u(q(·; ω), ω) for all ω ∈ �. From the definition of u and q̂(ω) =

q(ω; ω), we can derive that

u(q̂(·),ωn) − u(q(·;ωn),ωn)

=
n−1∑
j=1

[
v(q(ωj ;ωn),ωj+1)−v(q(ωj ;ωj ),ωj+1)−v(q(ωj ;ωn),ωj )+v(q(ωj ;ωj ),ωj )

]
.

Then, from q(ωj ; ωn) ≥ q(ωj ; ωj ) for j < n and the supermodularity of v, we have u(q̂(·), ω) ≥
u(q(·; ω), ω). Therefore, ≥Q satisfies the DDDR condition for u. �
D.3. Proof of Lemma 3

Proof of Lemma 3 . Assume the contrary, that is, U(�q ; x′′) does not I-dominate U(�q ; x′). 
Then, there exist �qa, �qb ∈ Q such that �qa ≥Q �qb and U(�qa ; x′) ≥ U(�q ; x′) for all �q ∈ [�qb, �qa], 
but (i) U(�qa ; x′′) < U(�qb ; x′′); or (ii) U(�qa ; x′) > U(�qb ; x′) and U(�qa ; x′′) = U(�qb ; x′′).

Consider the first case: U(�qa ; x′′) < U(�qb x′′). Let �qc ∈ arg max�q∈[�qb,�qa ] U(�q ; x′′). Then, we 
have U(�qc ; x′′) > U(�qa ; x′′). Now I show that for each n ≤ N , the following inequality holds:
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Sn ≡
n∑

i=1

[
u(�qc,ωi) − u(�qa,ωi)

] · λx′′
F (ωi) ≥ 0. (D.1)

Define �qn ∈ [�qc, �qa] as follows:

�qn(ωi) =
{

�qa(ωi), if i ≤ n,

�qc(ωi), if i > n.

Observe that for any i ≤ n,

u(�qn(ωi),ωi) = v(�qa(ωi),ωi) −
i−1∑
k=1

(v(�qa(ωk),ωk+1) − v(�qa(ωk),ωk)) − c(�qa(ωi))

= u(�qa(ωi),ωi).

Next, for any i > n, we have

u(�qn(ωi),ωi) − u(�qc(ωi),ωi)

=
n∑

k=1

{(v(�qc(ωk),ωk+1) − v(�qa(ωk),ωk+1)) − (v(�qc(ωk),ωk) − v(�qa(ωk),ωk))} .

Since �qc(ωk) ≥ �qa(ωk) for all 1 ≤ k ≤ n (from �qa ≥Q �qc) and v is supermodular, we have 
u(�qn(ωi), ωi) ≥ u(�qc(ωi), ωi). From the optimality of q̂c, we have U(�qc ; x′′) ≥ U(�qn ; x′′), 
which is equivalent to

0 ≤Sn +
N∑

l=n+1

[
u(�qc(ωk),ωk) − u(�qn(ωk),ωk)

]
λx′′

F (ωl).

By using u(�qn(ωl), ωl) ≥ u(�qc(ωl), ωl) for all l ≥ n + 1, we have Sn ≥ 0.
Observe that

U(�qc ;x′) − U(�qa ;x′) = λx′
F (ωN)

λx′′
F (ωN)

SN +
N−1∑
n=1

(
λx′

F (ωn)

λx′′
F (ωn)

− λx′
F (ωn+1)

λx′′
F (ωn+1)

)
· Sn.

By the MLRP of F , we have λx′
F (ωn)/λ

x′′
F (ωn) ≥ λx′

F (ωn+1)/λ
x′′
F (ωn+1) for all 1 ≤ n ≤ N − 1. 

Then, from (D.1), we have

U(�qc ;x′) − U(�qa ;x′) ≥ λx′
F (ωN)

λx′′
F (ωN)

SN = λx′
F (ωN)

λx′′
F (ωN)

(
U(�qc ;x′′) − U(�qa ;x′′)

)
> 0, (D.2)

which contradicts the assumption that �qc ∈ [�qb, �qa] and U(�qa ; x′) ≥ U(�q ; x′) for all �q ∈
[�qb, �qa].

Consider the second case: U(�qa ; x′) > U(�qb ; x′) and U(�qa ; x′′) = U(�qb ; x′′). If there 
exists �qc ∈ [�qb, �qa] such that U(�qc ; x′′) > U(�qa ; x′′), we can use the same argument as 
in the first case. If not, for all �q ∈ [�qb, �qa], U(�qa ; x′′) = U(�qb ; x′′) ≥ U(�q ; x′′), i.e., 
�qb ∈ arg max�q∈[�qb,�qa ] U(�q ; x′′). Then, we can use the similar argument as in the first case 
by substituting �qc to �qb . The only difference is that the last inequality in (D.2) should be re-
placed to equality, thus we have U(�qb ; x′) ≥ U(�qa ; x′). But it contradicts the assumption that 
U(�qa ; x′) > U(�qb ; x′). Therefore, U(�q ; x′′) I-dominates U(�q ; x′). �
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