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Abstract

I study a dynamic principal-agent problem where a project can be

completed either by directly attacking it or by splitting it into two sub-

projects. When the project is split, the principal can indirectly monitor

the agent by verifying the completion of the �rst subproject. How-

ever, the rigidity of this approach may introduce ine�ciencies. To miti-

gate moral hazard, the principal must commit to a deadline, which also

shapes her choice of project management strategy. The optimal con-

tract is determined by the interplay of these three factors: monitoring,

e�ciency, and an endogenous deadline.
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1 Introduction

A fundamental challenge in project management is balancing monitoring and

e�ciency. Splitting a project into smaller tasks allows a manager to track

progress more closely, reducing the risk of moral hazard�where subordinates

might shirk if their e�orts are not observed. This is the essence of a work

breakdown structure (WBS), a widely used method in project management

that involves dividing a project into manageable components (Organ and Bot-

tor�, 2022).1 WBS is commonly applied in industries such as construction,

engineering, and software development.2 While breaking down a project helps

clarify goals and improve communication, it can also introduce ine�ciencies.

Excessive decomposition may make a project rigid and slow progress (Golany

and Shtub, 2001), forcing managers to weigh the trade-o� between monitoring

and e�ciency.

For instance, this trade-o� can be observed in drug development. A biotech

�rm working on a new treatment can take one of two paths. The �rst involves

pursuing a single, comprehensive breakthrough that would complete the entire

drug development process in one step, from initial discovery to �nal formula-

tion. This approach is e�cient but risky, as success or failure is only revealed

at the very end, o�ering no opportunity to monitor progress along the way.

Alternatively, the �rm can divide the process into two stages. The �rst stage

involves identifying a key compound, and the second focuses on optimizing the

formula. While this staged approach requires two breakthroughs, it o�ers a

checkpoint after the �rst stage, allowing the �rm to assess progress and adjust

its strategy if necessary. Importantly, the �rm can switch between these paths

depending on progress, re�ecting the ongoing balance between e�ciency and

monitoring.

In this article, I introduce a dynamic principal-agent model that formalizes

the tension in project management. The model considers a principal who can

1The PMBOK guide de�nes WBS as �a hierarchical decomposition of the total scope of
work to be carried out by the project team to accomplish the project objectives and create
the required deliverables� (Project Management Institute, 2017).

2See Project Management Institute (2006) for additional examples.
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choose between two paths to project completion: tackling the project as a

whole (the direct approach), which requires a single breakthrough that pro-

gresses slowly, or breaking the project into two subprojects (the sequential

approach), each requiring a faster but separate breakthrough. At the out-

set, the principal o�ers a contract specifying a schedule that outlines which

approach to follow over time, the reward to be paid upon success, and a ter-

mination policy. If the agent accepts the contract, they must decide at each

stage whether to work on the assigned approach or shirk for private bene�t.

To highlight the tension between the direct and sequential approaches, I

impose two key assumptions. First, the completion of the �rst subproject (in

the sequential approach) is observable and contractually veri�able, which al-

lows the contract to be extended upon subproject completion. This feature

provides a monitoring advantage, as it enables the principal to better oversee

progress. The second assumption is that the direct approach is more e�cient

than the sequential one. Thus, while the sequential approach has the advan-

tage of better monitoring the agent, it may have a disadvantage in e�ciency

compared to the direct approach.

In addition to these elements, a third important economic factor a�ects

the choice of approach: the deadline e�ect. The principal needs to impose a

deadline because, without one, the agent could (and likely would) shirk indef-

initely, never completing the project. Therefore, the deadline is essential to

overcoming moral hazard. Furthermore, the deadline is imposed by the prin-

cipal, i.e., it is endogenously determined. Consequently, the optimal contract

is shaped by the interplay of these three factors: monitoring, e�ciency, and

endogenous deadlines.

I �rst set aside the e�ciency concern�considering the case where both ap-

proaches are equally e�cient�to focus on the interaction between monitoring

and deadline e�ects. In this context, I show that the optimal contract involves

at most one switch between the approaches. Speci�cally, the principal initially

employs the sequential approach up to an intermediate deadline. If the sub-

project is completed by then, the principal extends the deadline; otherwise,

the principal switches to the direct approach until the �nal deadline.
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Intuitively, near the deadline, the direct approach has a comparative ad-

vantage because it requires only one breakthrough, while the sequential ap-

proach requires two. In contrast, when the deadline is distant, the sequential

approach is more appealing due to the possibility of extending the deadline,

which arises from monitoring. This suggests that the principal would prefer

the sequential approach when the deadline is far o� and the direct approach

when it is imminent. However, the monitoring advantage might be so signi�-

cant that the principal could opt for the sequential approach even close to the

deadline: the intermediate deadline equals to the �nal deadline. Conversely,

the optimal deadline might be short enough that the principal would prefer

the direct approach right from the outset: the intermediate deadline is set to

0.

I show that the optimal contract crucially depends on the project's return�

the gross value to the principal from completing the project, given its operating

cost. When the project return is low, the optimal deadline is short, and the

principal opts for the direct approach. When the project return is high, mon-

itoring is highly advantageous, leading the principal to choose the sequential

approach. In intermediate cases, there is a switch from the sequential approach

to the direct approach (Proposition 2).

Next, I introduce the e�ciency loss to the sequential approach, representing

the idea that requiring milestones may slow down ultimate project develop-

ment. When the e�ciency loss is small enough, I show that a similar result as

in the previous case holds: there are three regions of the project return that

characterize the form of the optimal contract (Proposition 4). In other words,

the characterization of the optimal contract when the approaches are equally

e�cient is robust to a small e�ciency loss. This is mainly because e�ciency

dominates monitoring only if the deadline is distant.

I also consider the case where the e�ciency loss is large. Here, even if the

project return is moderately high, the principal prefers the direct approach

over the sequential approach to avoid the e�ciency cost. Nevertheless, if the

project return is very high, the principal prefers to monitor it to some degree.

In fact, there is a cuto� value for the project return such that the principal
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chooses the direct approach when the return is below this cuto�. Interestingly,

if the return exceeds the threshold, all three economic forces come into play:

the principal begins by choosing the direct approach due to e�ciency concerns,

switches to the sequential approach for monitoring purposes, and then reverts

to the direct approach due to the deadline e�ect (Proposition 5).

My results are congruent with the observation that applied scienti�c re-

search (e.g., development of a new drug, clinical trials) is typically staged.

The return of applied research projects�the ratio between the project com-

pletion payo� and the operating cost�is usually large, implying the superiority

of the sequential approach. In contrast, the immediate return of basic research

(e.g., chemistry, in-vitro experiments) is lower than applied research because

�basic research is performed without thought of practical ends" (Bush, 1945).3

My results suggest that the direct approach should be preferred for basic re-

search because such projects tend to have lower returns than applied ones. For

instance, the Research Project designation (R01) grant by the National Insti-

tute of Health (NIH) supports �a discrete, speci�ed, circumscribed project�

rather than a staged project.4

The remainder of this article is organized as follows. Related literature is

discussed below. Section 2 introduces the basic setup of the model and analyzes

the �rst-best case. Section 3 provides a planner's problem with deadlines.

Then, Section 4 and 5 characterize the optimal contracts for the cases with and

without the e�ciency losses from splitting the project. Section 6 concludes.

The formal analysis and the proofs are relegated to an Appendix.

3Bush argues that although broad and basic studies seem to be less important than
applied ones, they are essential to combat diseases because progress in the treatment �will
be made as the result of fundamental discoveries in subjects unrelated to those diseases,
and perhaps entirely unexpected by the investigator." However, since this article does not
consider externalities, I abstract from this possibility and focus on the principal's return
from the completed project.

4https://grants.nih.gov/grants/funding/r01.htm
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Related Literature

There is a growing literature on contracting for multi-stage projects, e.g., Hu

(2014); Green and Taylor (2016a); Wolf (2018); Moroni (2022). The most

closely related study is Green and Taylor (2016a), who study a model in which

multiple breakthroughs are needed to complete a project and in which an agent

must be incentivized to exert unobservable e�ort. The sequential approach

considered here comprises the baseline model with the tangible breakthrough

in the working paper version of their paper (Green and Taylor, 2016b). How-

ever, the option to complete the project directly, which is not considered in

their setup, allows the principal to face a choice problem between the two

approaches. Moreover, this choice problem arises at every point in time.

Therefore, the principal's problem becomes more complex from a dynamic

perspective.

A related article is Carnehl and Schneider (2023), where they explore a two-

armed bandit problem with one arm requiring a single breakthrough and the

other needing multiple breakthroughs. The agent knows the arrival rates for

the latter but must infer the feasibility of the former through experimentation�

a key di�erence between their article and this one. Unlike their focus on

a single-agent decision problem with an exogenous deadline, this article ad-

dresses principal-agent contracting with an endogenously determined deadline.

Despite these di�erences, we share a common insight in that the chosen ap-

proaches may switch up to two times.

This article is also related to the literature on monitoring in dynamic con-

tracts, e.g., Orlov (2015); Piskorski and Wester�eld (2016); Dilm�e and Garrett

(2019); Marinovic and Szydlowski (2019); Varas et al. (2020); Marinovic and

Szydlowski (2020); Chen et al. (2020); Wong (2023). In most of these papers,

a monitoring process provides some information on the agent's current or past

action. In this sense, the �rst breakthrough in the sequential approach can

be considered as a monitoring device since it lets the principal know that the

agent has worked. However, the completion of the �rst subproject gives more

information than merely the agent's past actions. Before the subproject com-

pletion, the success requires one relatively hard breakthrough or two easier
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breakthroughs. After completing the subproject, it requires only one rela-

tively easy breakthrough. Thus, the subproject completion is distinguished

from standard monitoring processes since it also provides information about

the subsequent procedure toward success.

This article is relevant to the literature studying complementary innova-

tions, e.g., Green and Scotchmer (1995); Gilbert and Katz (2011); Bryan and

Lemus (2017); Poggi (2021). Two subprojects in the sequential approach can

be considered as `perfect' complements in the sense that completing a subpro-

ject does not create any value but completing both of them does. The most

relevant paper in this line is Kim and Poggi (2024), which introduces an inno-

vation race model with two R&D routes: one requiring a single breakthrough

(direct development) and the other requiring two breakthroughs (research and

development). However, to my knowledge, most studies in this literature focus

on the problems involving competing �rms or a single decision maker, whereas

this article addresses an agency problem.

2 Model

Preliminaries A principal (she) hires an agent (he) to complete a (main)

project. The project is conducted in continuous time and can be potentially

operated over an in�nite horizon: t ∈ [0,∞). Once the project is completed,

the principal realizes a payo� Π > 0, referred to as the project return, and the

game ends. While the project is running, the principal incurs an operating

cost of c > 0 per unit of time. The principal is assumed to have an in�nite

amount of resources to fund the project, while the agent is protected by limited

liability; that is, the principal can only transfer nonnegative rewards to the

agent.5 The principal and the agent are both risk-neutral and patient, i.e.,

they do not discount the future. Both players have outside options of zero.

Paths toward project completion There are two routes to completing the

project. The �rst is to tackle the project directly, namely the direct approach.

5See Remark 1 for further discussion of limited liability.
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The second is to split the main project into two subprojects, which I term

the sequential approach. Completing the �rst subproject does not provide any

independent value for the principal or the agent. However, the completion of

the subproject is observable by both players and contractually veri�able by a

court. Thus observing the completion of the subproject can be considered a

type of monitoring.

Contracts and arrival rates At time 0, the principal o�ers the agent a

contract consisting of (i) the deadlines at which the project is terminated; (ii)

the reward schedules upon project completion; (iii) the approaches to be taken;

and (iv) the agent's recommended e�ort. The principal can fully commit to

these contractual terms. See Section B for the formal de�nition of the contract.

Note that the contract is contingent on the subproject completion. When

the subproject has not been completed, at each point in time t, the contract

speci�es which approach to take: the direct approach (at = 1) or the sequential

approach (at = 0). The agent allocates his 1 unit of e�ort to working (b̃t ∈
[0, 1]), and shirking (1 − b̃t).6 The allocation of e�orts is unobservable to the

principal. Then, at time t, the project is completed at the arrival rate λDatb̃t

(and the agent receives the reward Rt), the subproject is completed at the

rate λS(1 − at)b̃t, and the agent receives φ(1 − b̃t) as a private �ow bene�t

from shirking. I assume that the marginal private bene�t φ is positive but

less than the principal's �ow operating cost c. It is easier to complete the

subproject than to complete the main project, i.e., λS is greater than λD. If

neither the main project nor the subproject is completed by the deadline, the

project is terminated. When the subproject succeeds, the deadline and the

reward schedule are updated. In this case, the agent only needs to complete

one more subproject (with the same arrival rate) to make the entire project

succeed. Thus, the main project is completed at the rate λS b̃t.

No-deadline benchmark As a �rst benchmark, I consider the problem of a

social planner who is able to observe the agent's e�ort, directs which approach

6The agent's choice will be denoted with tilde, whereas the principal's choices are not.
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to take, and faces no exogenous deadline. This scenario represents the �rst-best

situation where the planner has perfect information, control over the agent's

actions, and no deadline constraints. Since the bene�t from shirking is less

than the �ow cost, it is optimal for the planner to make the agent work in this

case.

To determine which approach is more e�cient, I compare the expected sur-

pluses of each approach. Since there is no deadline and the agent never shirks,

the project will surely be completed, and the planner will receive Π (recall

that neither the principal nor the agent discounts the future). If the planner

adopts the direct approach inde�nitely, i.e., until the project is completed,

the expected duration of the project is 1
λD
, resulting in the expected cost is

c
λD
. Similarly, if the planner employs the sequential approach inde�nitely, the

expected duration of each breakthrough is 1
λS
, thus, the total expected dura-

tion is 2
λS
, and the expected cost is 2c

λS
. Therefore, the expected surpluses of

employing each approach are derived as follows.

Direct approach : Π− c

λD
, Sequential approach : Π− 2c

λS
.

Parametric assumptions I begin the analysis by focusing on the case

where there is no e�ciency loss from splitting the project: 2λD = λS. Then,

in Section 5, I consider the case where splitting the project harms the ef-

�ciency: 2λD > λS. Additionally, I assume that the project is pro�table

enough: Π > 2c
λS
≥ c

λD
.

Remark 1. If the agent is not protected by limited liability, the following con-

tract will virtually allow the principal to achieve the �rst-best outcome. The

principal does not use any deadline and always chooses the direct approach.

Then, at each point of time, if the project is not completed, she charges φ to

the agent, i.e., the agent pays φ to the principal. If the project is completed,

the principal pays φ
λD

+ ε to the agent for some small ε > 0. Observe that

the agent will always work because the instantaneous payo� from working is

λD( φ
λD

+ ε)−φ whereas that from shirking is zero. Then, the agent's expected

payo� is ε, and the principal's expected payo� is Π− c
λD
− ε. By sending ε to
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zero, the principal is able to achieve the �rst-best outcome.

3 Planner's Problem with Deadlines

As an intermediate step toward characterizing the optimal contract, I consider

a problem where a planner faces exogenous deadlines. These deadlines generate

ine�ciencies, as Π is assumed to be large enough that continuing the project

is more bene�cial in expectation than terminating it.

Assume that the project is terminated when time passes a deadline T .

Additionally, the deadline is extended by ∆ ≥ 0 when the subproject is com-

pleted.7 In other words, the planner faces two exogenous deadlines: the orig-

inal deadline T under no subproject completion, and the extended deadline

T + ∆ under a subproject completion. Given these deadlines, the planner

chooses which approach to take at each point in time.

I begin by introducing a benchmark policy where the planner initially em-

ploys the sequential approach and later switches to the direct approach.

De�nition 1. A policy is called a one-switch policy if there exists an inter-

mediate deadline S ∈ [0, T ] such that (i) the sequential approach is employed

up to S, (ii) if the subproject is completed before S, the planner continues

working on the remaining subproject until the extended deadline T + ∆, and

(iii) if the subproject is not completed by S, the planner switches to the direct

approach until the deadline T .

This class of policies includes two extreme cases. Observe that a one-switch

policy with S = 0 does not involve any sequential approach, and is referred to

as the direct-only policy. Conversely, a one-switch policy with S = T does not

involve any direct approach, and is referred to as the sequential-only policy.

The following theorem shows that the optimal policy takes the form of a

one-switch policy.

7It is possible to consider the case where the deadline is shortened after the subproject
completion. However, in the context of the analysis focusing on the agency problem, I
speci�cally examine the scenario of deadline extension because a shortened deadline would
disincentivize the agent from working.
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Proposition 1. Suppose that there is no e�ciency loss from splitting the

project (λS = 2λD). When the planner faces the deadline T and the extension

∆ resulting from the subproject completion, the optimal policy is characterized

as follows:

(a) (Long extension) if ∆ ≥ ∆̄ ≡ 1
λS

log
[

λSΠ−c
(λS−λD)Π−c

]
, the sequential-only

policy is optimal;

(b) (Short extension) if ∆ < ∆̄, there exists T̂ > 0 such that

(i) when T < T̂ , the direct-only policy is optimal;

(ii) when T > T̂ , the one-switch policy with the intermediate deadline

T − T̂ is optimal.

This theorem implies that the direct approach is never employed when the

deadline extension is su�ciently long. On the other hand, when the deadline

extension is relatively short, there exists a time T̂ such that the direct approach

begins to be employed when fewer than T̂ units of time remain.

Direct-only vs. sequential-only policies To provide an intuition for this

theorem, I compare the expected surpluses of the project under the direct-only

policy (d) and the sequential-only policy (s). Note that the expected surplus,

W i(T,∆) for i ∈ {d, s}, can be expressed as follows:

W i(T,∆) = Π · P i(T,∆)− c · Di(T,∆),

where P i(T,∆) is the probability that the project is completed by the deadline�

namely, the completion probability�and DiT,∆ is the expected duration of the

project. The formal de�nitions of each term in the above equation are pre-

sented in Appendix A.1.

I begin by comparing the completion probabilities across policies when

there is no deadline extension (∆ = 0). The following lemma shows that

Pd(T, 0) and Ps(T, 0) cross once as T increases. The proof is in Appendix

A.2.
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(a) Long Deadline Extension: ∆ = 1, λD = 1, λS = 2, Π = 3, c = 1
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(b) Short Deadline Extension: ∆ = .1, λD = 1, λS = 2, Π = 3, c = 1

Figure 1: Completion Probabilities, Expected Durations,
and Expected Surpluses

Lemma 1. Suppose that ∆ = 0. There exists Ť such that Pd(T, 0) > Ps(T, 0)

for all T < Ť and Ps(T, 0) > Pd(T, 0) for all T > Ť .

Intuitively, under the direct-only policy, the planner needs only one break-

through, whereas the sequential-only policy requires two breakthroughs, which

is challenging within a short timeframe. Therefore, when the deadline is short,

the completion probability under the direct-only policy is higher than that

under the sequential-only policy. On the other hand, when the deadline is rel-

atively long, achieving two faster breakthroughs can be easier than achieving

one slower breakthrough. In this case, the sequential-only policy may have

a higher chance of project completion than the direct-only policy. I call this

dynamic the `deadline e�ect.'

Next, observe that the deadline extension provides additional bene�ts to
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the sequential-only policy: Ps(T,∆) increases as ∆ increases. I refer to this

as the `monitoring e�ect' because this increase in the completion probability

occurs due to the planner's ability to observe intermediate progress under the

sequential approach.

Based on these deadline and monitoring e�ects, I can infer that the direct-

only policy has a higher completion probability than the sequential-only policy

when both the original deadline and the deadline extension are short. The two

leftmost �gures in Figure 1 illustrate this. The horizontal axis represents the

deadline T . With the long deadline extension, as depicted in Figure 1a, the

sequential-only policy always have higher completion probabilities�the mon-

itoring e�ect outweighs the deadline e�ect. When the extension is short, as

depicted in Figure 1b, the direct-only policy has higher completion proba-

bilities with short deadlines, whereas the sequential-only policy has higher

completion probabilities with long deadlines.

These e�ects play crucial roles in comparing expected surpluses between the

two policies. When computing the expected surpluses, the expected duration�

illustrated in the middle �gures of Figure 1�needs to be considered: the

sequential-only policy always has a longer expected duration due to the possi-

bility of an extension. Nevertheless, the rightmost �gures in Figure 1 demon-

strate that the expected surpluses share a key characteristic with the comple-

tion probabilities: the direct-only policy can achieve higher expected surpluses

only when both the deadline and the extension are short.

In light of this intuition, we can guess that the one-switch policy�employing

(i) the sequential approach when the deadline is distant and (ii) the direct ap-

proach when the deadline is near�may be optimal. Proposition 1 veri�es that

it indeed is.

Comparative statics of the extension cuto� Proposition 1 shows that

there exists a cuto� for the deadline extension, ∆, such that the sequential-only

policy is optimal if the extension is longer than the cuto�; otherwise, the direct

approach is employed near the deadline. The following lemma demonstrates

how this cuto� changes with respect to the project payo� Π.
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Lemma 2. Suppose that λS = 2λD and Π > c
λD

. The extension cuto� ∆

decreases in the project payo� Π.

Proof of Lemma 2. Note that

∂∆

∂Π
= − λDc

λS(λSΠ− c)((λS − λD)Π− c)
.

From λS = 2λD and Π > c
λD
, the above equation is negative.

Intuitively, as Π increases, the completion probability becomes a more in-

�uential factor than the expected duration in deriving the optimal policy.

For example, in Figure 1a, the sequential-only policy has a higher completion

probability than the direction-only policy, but it also has a longer expected

duration, resulting in higher costs. In the �gure, Π is chosen to be large enough

that the expected surplus under the sequential-only policy is higher than that

under the direct-only policy, even near the deadline. However, if Π were rel-

atively low, the higher expected duration could cause the expected surplus

under the sequential-only policy to be lower than that under the direct-only

policy near the deadline.

4 Optimal Contract Derivation

In this section, I characterize the optimal contract in the case where there is

no e�ciency loss from splitting the project. As in the tangible progress case

in Green and Taylor (2016b), the optimal contract can be implemented with

three key properties: (i) the contract is terminated after a deadline; (i) the

reward for the project completion, Rt, linearly diminishes over time; and (ii)

the deadline is extended by 1
λS

upon subproject completion.8

A distinctive feature of this model is that the principal must decide `which

path to take.' Since the contract involves a deadline and an extension of

it, based on the result of the previous section, we can naturally infer that

8The details of these properties will be addressed in Section 4.2.
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the optimal choice of approaches over time may involve one switch from the

sequential approach to the direct approach�or no switch at all. In light of

these insights, I de�ne contracts involving the above characteristics.

De�nition 2. A contract is called a one-switch contract with a �nal deadline

T and an intermediate deadline S ∈ (0, T ) if

(i) the sequential approach is employed up to S,

(ii) when the subproject is completed before S, the contract is extended by
1
λS

and the reward upon project completion at time t is RS
t ≡ φ(T − t+

2
λS

),

(iii) if the subproject is not completed by S, the direct approach is employed

up to T and the reward upon project completion at time t is RD
t ≡

φ(T − t+ 1
λD

), and

(iv) the contract is terminated if the project is not completed by T .

When S = T , we call the contract a sequential-only contract, and when S = 0,

we call the contract a direct-only contract.

The following proposition shows that the optimal contract takes one of the

above forms.

Proposition 2. Suppose that there is no e�ciency loss from splitting the

project (λS = 2λD). There exist thresholds ΠF , ΠS and ΠD such that ΠS >

ΠD > ΠF ≡ c+φ
λD

and the optimal contract can be implemented as follows:

(a) when Π > ΠS, a sequential-only contract is optimal;

(b) when ΠS > Π > ΠD, there exists a one-switch contract that is optimal;

(c) when ΠD > Π > ΠF , a direct-only contract is optimal; and

(d) when Π < ΠF , the project is infeasible.
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As discussed in Lemma 2, the direct approach is preferred when Π is lower

and the sequential approach is preferred when Π is higher. The above theorem

aligns with that intuition. In the subsequent subsections, I provide the details

of the derivation of this result.

4.1 Promised Utility and Incentive Compatibility

Following the standard approach in the dynamic contract literature, I consider

the agent's promised utility as a state variable and write a contract recursively

(e.g., Spear and Srivastava, 1987). For a contract Γ, let P0(Γ) and U0(Γ) be

the expected payo�s of the principal and the agent at time 0 when the agent

adheres to the recommended e�ort speci�ed in the contract.

The core of the analysis is the derivation of the principal's value func-

tion, denoted by V (u), which represents her maximized expected payo� P0(Γ)

subject to the promise-keeping constraint U0(Γ) = u and the incentive com-

patibility condition, which will be demonstrated later in this subsection. If a

contract Γ satis�es P0(Γ) = V (u) and U0(Γ) = u, Γ is said to implement a

pair of expected payo�s (u, V (u)). Once the value function is characterized,

the principal solves

ū ≡ arg max
u≥0

V (u). (MP)

Then, the optimal contract is the contract that implements (ū, V (ū)). In the

rest of this section, I describe how to derive the value function V (u).

Promised utility upon subproject completion I begin by considering

the principal's problem, given that the subproject is completed at time t. Let

utS denote the agent's promised utility, which will be considered as a state

variable. Since this case only requires one more breakthrough, it is identical

to the single-stage benchmark of Green and Taylor (2016a). They show that

the optimal contract is to impose a deadline t+
utS
φ
and a linearly diminishing

reward schedule {Řt
s}t≤s≤t+utS/φ where

Řt
s = utS +

φ

λS
− φ(s− t) (4.1)
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The intuition is that when the agent's promised utility is utS, the principal

can incentivize the agent to work at most
utS
φ
units of time. This is because if

the principal requires him to work more than
utS
φ
units of time, he can achieve

higher payo�s than the promised utility by shirking.

Incentive compatibility conditions Now consider the agent's problem

when the subproject has not been completed. Suppose that the promised

utility is ut at some time t. Under the direct approach, if the agent works for a

small interval of time [t, t+dt), the breakthrough occurs and the agent receives

the reward Rt with a probability λDdt. However, in this event, he loses the

continuation utility, thus, the expected payo� of working is λD(Rt−ut)dt. On
the other hand, if he shirks, his payo� is φdt. From this, we can derive the

incentive compatibility constraint under the direct approach (at = 1):

Rt ≥ ut +
φ

λD
. (IC1)

Next, under the sequential approach, the agent is compensated in the form

of the promised utility upon the subproject completion. Thus, the expected

payo� of working for [t, t+ dt) is λS(utS − ut)dt. Then, the incentive compati-

bility constraint under the sequential approach (at = 0) is

utS ≥ ut +
φ

λS
. (IC0)

4.2 Value Function Characterization

In this subsection, I characterize the value function of the principal. A natural

conjecture is that the principal's expected payo� is maximized when incentive

compatibility conditions bind. I outline key properties of contracts make IC

conditions bind, and then characterize the value function.

Deadline and extension With binding IC conditions, the agent's promised

utilities should be consumed at the same rate with the bene�t from shirking:
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du
dt

= u̇t = −φ, or equivalently, ut = u0 − φt. If the completion has not been

made by u0
φ
, the promised utility is equal to the agent's outside option 0, thus,

the contract is terminated, or equivalently, the deadline of the contract is u0
φ
.

When the sequential approach is chosen, to make (IC0) bind, we have

t+
utS
φ

= t+
ut
φ

+
1

λS
=
u0

φ
+

1

λS
.

It implies that upon the subproject completion, the updated deadline t +
utS
φ

extends the original deadline u0
φ
by 1

λS
.

Linearly diminishing rewards Let T denote the deadline u0
φ
. By using

ut = u0−φt = φ(T − t), to make (IC1) bind, the reward of completion at time

t via the direct approach is

Rt = ut +
φ

λD
= φ

(
T − t+

1

λD

)
,

which corresponds to RD
t in De�nition 2.

Next, when the subproject is completed at ť, to make (IC0) bind, I have

uťS = uť + φ
λS
. Then, by (4.1), the reward of completion at time t ∈ [ť, T + 1

λS
]

via the sequential approach is

Řť
t = uť +

φ

λS
+

φ

λS
− φ(t− ť) = φ

(
T − t+

2

λS

)
,

which corresponds to RS
t in De�nition 2.

Value Function Based on the above observations, I infer that the value

function is linked to the planner's problem with a deadline and its extension,

as explored in the previous section. LetW∗(T,∆) denote the optimal expected

surplus under the deadline T and extension ∆, derived from the optimal policy

in Proposition 1. Then, when the agent's promised utility is u, a conjecture

for the principal's value function is the expected surplus from the deadline u
φ

and the extension 1
λS
, W∗(u

φ
, 1
λS

), net of u.
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The following proposition veri�es this conjecture, with the proof provided

in Appendix C.

Proposition 3. The principal's value function V is characterized as follows:

V(u) =W∗
(
u
φ
, 1
λS

)
− u. (4.2)

Moreover, V is concave.

A key step in proving this proposition is �nding a contract implementing

the pair of the agent's promised utility, u, and the principal's expected payo�,

V (u). In terms of choosing which approach to take, the principal's incentives

are perfectly aligned with those of the planner�who faces the same deadlines as

the principal�in that both want to maximize the expected surplus. Since the

planner's policy with at most one switch is optimal, I show that the principal

can implement the pair using a contract that involves at most one switch with

linearly diminishing rewards (Appendix C.2).

4.3 Proof of Proposition 2

Now that I have characterized the value function, the next step is to pin down

the optimal initial promised utility level, ū, which is the solution to (MP). This

will establish the starting point of the contract in Figure 2 and determine the

deadline length, u
φ
. This can be interpreted as the principal endogenously

imposing the deadline to overcome the agent's moral hazard.

Recall that the direct approach is never employed when the extension is

greater than ∆ (Lemma 1 (a)) and the cuto� is decreasing in Π (Proposition 2).

Let ΠS be the solution of ∆ = 1
λS
. Then, for all Π > ΠS, the direct approach

will not be employed, even near the deadline. This establishes Proposition 2

(a) and is illustrated in Figure 2 (c).

When Π < ΠS, Proposition 1 (b) indicates that the optimal approach is

switched from the sequential approach to the direct approach when T̂ units of

time remain. In terms of the promised utility, the switch happens at û1 ≡ φT̂ .
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(a) Low Π (b) Intermediate Π (c) High Π

Figure 2: Value functions when there is no e�ciency loss

Then, the form of the optimal contract depends on whether ū is greater than

û1 or not. For example, the value functions in Figure 2a and 2b both involve

a switching point û1, however, ū is greater than û1 in Figure 2a and less than

û1 in Figure 2b. Thus, the optimal contracts are a direct-only contract in

Figure 2a and a contract with a switch from the sequential approach to the

direct approach in Figure 2b. By choosing ΠD such that u and û1 same, we see

that the optimal contract involves a switch when Π ∈ (ΠD,ΠS), establishing

Proposition 2 (b). Conversely, when Π < ΠD, the direct approach will only

appear in the optimal contract.

Last, the feasibility of the project depends on whether ū is greater than 0 or

not. When ū is equal to zero, the principal's expected payo� is maximized at

u = 0, meaning it is optimal for the principal not to initiate the contract�the

project is infeasible. This occurs when the principal's �ow pro�t is negative

near the deadline T . Since the promised utility u is close to zero near the

deadline, the reward R is approximately φ
λD
. Then, the principal's �ow pro�t

in [T − dt, T ] is approximately

λDdt ·
(

Π− φ

λD

)
− cdt = λ

(
Π− φ+ c

λD

)
dt.

Therefore, the project is feasible if and only if Π is greater than ΠF ≡ c+φ
λD

.

I show that ΠD ∈ (ΠF ,ΠS) (Lemma 11). Then, when Π ∈ (ΠF ,ΠD), the

direct-only contract is optimal (Proposition 2 (c)); and when Π < ΠF , the

project becomes infeasible (Proposition 2 (d)).

Remark 2. A mixture of contracts also generates another contract. For ex-
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ample, a contract with a soft deadline�randomly terminating the agent after

reaching the soft deadline, as in Green and Taylor (2016a)�can be represented

by a mixture of two contracts de�ned here. However, a mixed contract cannot

improve upon the one characterized above. This follows because the value

function V is concave (Lemma 9 (c)).

Consider a set of contracts {Γi}1≤i≤n where the agent's expected utility

under Γi is ui, and the weight is wi with
∑n

i=1 wi = 1 and
∑n

i=1wi · ui = u.

The principal's expected payo� from this mixture is
∑n

i=1wi · P0(Γi) and the

agent's expected utility is u. By concavity, I have V (u) ≥
∑n

i=1wiV (ui).

Additionally, V (ui) ≥ P0(Γi) holds for all 1 ≤ i ≤ n because V (ui) is the

principal's maximized expected pro�t given that the agent's expected payo�

is ui. Thus, V (u) is greater than or equal to the expected payo� of the mixed

contract. Hence, any mixed contract cannot improve upon the characterized

contract.

5 The Optimal Contract under E�ciency Loss

I now consider the case where splitting the project generates an e�ciency loss,

i.e., λS < 2λD. This introduces e�ciency as another economic force, alongside

monitoring and deadline e�ects, that determines the optimal contract.

I de�ne a parameter η ≡ λS
λD
− 1, which measures the e�ciency of the

sequential approach. Note that 0 < η < 1, and the e�ciency loss increases as

η decreases. In this section, I characterize the optimal contracts for two cases:

(i) when the e�ciency loss is small (η > η ≡ max{
√

c
c+φ

, 1
e−1
}); and (ii) when

the e�ciency loss is large (η < η ≡ min{ c
c+φ

, 1
e−1
}).9

In Figures 3 and 4, I illustrate the principal's value functions when there

are e�ciency losses from splitting the project. A key characteristic of these

value functions is that the direct approach is employed when the promised

9These do not cover cases where the e�ciency loss is intermediate. In such cases, the
form of the optimal contract depends heavily on the parameter values η and Π, resulting in
many subcases to analyze. Thus, I focus on the extreme cases to provide results with clear
economic implications.
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(a) Low Π (b) Intermediate Π (c) High Π

Figure 3: Value functions when the e�ciency loss is small

utility is high, indicating that the deadline is far o�. To understand this dy-

namics, I compare the direct-only and sequential-only contracts again. As time

horizons become longer, the sums of expected payo�s for both players from

these contracts converge to the expected surpluses of the no-deadline bench-

mark: Π− c
λD

for the direct-only contract and Π− 2c
λS

for the sequential-only

contract. Therefore, e�ciency determines which approach should be chosen.

Since we focus on the case where the sequential approach is less e�cient than

the direct approach, the principal would chose the direct approach when the

deadline is distant.

This observation, combined with the e�ects of monitoring and deadline

discussed in the previous sections, leads us to conjecture that there will be

two switching points û1 and û2 in determining the value function. The direct

approach is chosen when u > û2 or u < û1, and the sequential approach is

chosen when u ∈ (û1, û2).

When the e�ciency loss is relatively small, I show that û2 is always greater

than the optimal initial promised utility level u (Lemma 20). It implies that

the switch occurs at most once in the optimal contract. Therefore, a result

similar to the no-e�ciency-loss case holds. In other words, Proposition 2 is

robust to small e�ciency losses.

Proposition 4. Suppose that η ∈ (η, 1), i.e., the e�ciency loss from splitting

the project is small. There exist thresholds Π̃D(η) and Π̃S(η) with Π̃S(η) >

Π̃D(η) > ΠF such that the optimal contract is determined as follows:

(a) when Π > Π̃S(η), a sequential-only contract is optimal;
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(a) Low Π (b) High Π

Figure 4: Value functions when the e�ciency loss is large

(b) when Π̃S(η) > Π > Π̃D(η), there exists a one-switch contract that is

optimal;

(c) when Π̃D(η) > Π > ΠF , a direct-only contract is optimal.

Now suppose that the e�ciency loss is large. Figure 4 illustrates that the

sequential approach is either not employed at all (for small Π) or is employed

in the middle of the contract (for large Π). Intuitively, as Π increases, the

monitoring e�ect becomes more signi�cant. However, the direct approach is

preferred at the beginning of the contract due to its e�ciency and at the end of

the contract due to the deadline e�ect. Therefore, if the sequential approach

is ever employed, the contract will involve two switches. I formally de�ne the

two-switch contract and state the theorem for the case of large e�ciency loss.

De�nition 3. A contract is called a two-switch contract with a �nal deadline

T and two intermediate deadlines 0 < S1 < S2 < T if

(i) the direct approach is employed up to S1 and the reward upon project

completion at time t is RD
t ,

(ii) if the project is not completed by S1, the sequential approach is employed

up to S2, and if the subproject is completed before S2, the contract is

extended by 1
λS

with the reward upon project completion at time t being

RS
t ,

(iii) if the subproject is not completed by S2, the direct approach is employed

up to T and the reward upon project completion at time t is RD
t , and
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(iv) the contract is terminated if the project is not completed by T .10

Proposition 5. Suppose that η is less than η, i.e., the e�ciency loss from

splitting the project is large. There exists a threshold Π̃M(η) with Π̃M(η) > ΠF

such that the optimal contract is determined as follows:

(a) when Π > Π̃M(η), there exists a two-switch contract that is optimal;

(b) when Π̃M(η) > Π > ΠF , a direct-only contract is optimal.

Intuitively, the principal generally prefers the direct approach since there

is a large e�ciency loss from the sequential one. Nevertheless, when Π is large

enough, the principal may take advantage of the monitoring bene�t by choos-

ing the sequential approach. If the principal decides to monitor at some point,

it is optimal to monitor in the middle of the contract. This is because e�ciency

outweighs monitoring at the beginning of the contract and the deadline e�ect

outweighs monitoring at the end of the contract. Hence, the optimal contract

involves two switches when Π is large.

For a high-return project, the theorem illustrates that a type of contract

involving all three economic forces is optimal. At the beginning of the contract,

the principal chooses the direct approach because it is more e�cient (i.e.,

e�ciency is initially the dominant concern). When the success is not delivered

by a speci�ed time, the principal begins to monitor the agent more closely by

switching to the sequential approach (i.e., monitoring becomes the primary

concern). She extends the deadline if the agent makes intermediate progress,

but if he does not make progress before the deadline is near, the principal

switches back to the direct approach in a �last-ditch� attempt at getting the

job done (i.e., the deadline e�ect becomes the preeminent motivation).

6 Conclusion

In this article, I study the economic tradeo�s between a direct approach and a

sequential approach for achieving a discrete goal in the context of a principal-

10The rewards RDt and RSt are de�ned in the same way as in the one-switch contract.
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agent setting. The optimal contract is determined by the interplay of mon-

itoring, e�ciency, and an endogenous deadline. I show that the form of the

optimal contract depends on the project return. When the e�ciency loss from

splitting the project in two does not exist or is small, only the direct approach

will be chosen if the project return is low, whereas only the sequential ap-

proach will be chosen if the project return is high. If the project return is

intermediate, it is optimal to begin with the sequential approach and then

switch to the direct approach. When the e�ciency loss is large, the principal

generally chooses the direct approach. However, if the project return is above

a certain cuto�, she may choose the sequential approach for a short period of

time in the middle of the contract (i.e., there may be two switches).

There are numerous avenues open for further research. For example, the

principal may be able to design the approaches directly. In this article, I as-

sume that the two approaches are exogenously given and the principal chooses

between them. However, in practice, a project manager often designs how

many milestones to partition the main project into and how di�cult each sub-

project is. We could also introduce `learning by doing' into the model. If

we assume that the agent learns from early errors, the arrival rate of project

completion would increase over time.11 I leave these intriguing questions�and

others�for future work.
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Appendix

A Proofs for Section 3

A.1 Direct-only vs. Sequential-only Policies

In this section, I provide formal representations of the completion probabilities,

expected durations and expected social surpluses under the direct-only and the

sequential-only policies.

Suppose that the planner adopts the direct-only policy. Note that the

direct-only policy is not a�ected by the deadline extension ∆, so we can omit it.

Let τm denote the date of the project's completion. The completion probability

is

Pd(T ) ≡
∫ T

0

λD · e−λDτmdτm = 1− e−λDT , (A.1)

and the expected duration of the project is

Dd(T ) ≡
∫ T

0

τm · λD · e−λDτmdτm + T · e−λDT =
1

λD
(1− e−λDT ). (A.2)

Then, the expected social surplus of the direct-only policy is

Wd(T ) ≡ Π · Pd(T )− c · Dd(T ) =

(
Π− c

λD

)
· (1− e−λDT ). (A.3)

Now suppose that the planner employs the sequential-only policy. Let τs

denote the date of the �rst subproject's completion. The probability of project

completion can be derived as follows:

Ps(T,∆) ≡
∫ T

0

[∫ T+∆

τs

λSe
−λS(τm−τs)dτm

]
· λSe−λSτsdτs

= 1− (1 + λS · T · e−λS∆) · e−λST . (A.4)

Next, conditional on the �rst subproject being completed at τs, the expected
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duration is

D1(T,∆, τs) ≡
∫ T+∆

τs

τm · λSe−λS(τm−τs)dτm + (T + ∆) · e−λS(T+∆−τs).

Then, the expected duration of the project can also be derived as follows:

Ds(T,∆) ≡
∫ T

0

D1(T,∆, τs) · λSe−λSτsdτs + T · e−λST

=
2

λS
(1− e−λST )− T · e−λS(T+∆). (A.5)

Then, the expected social surplus of the sequential-only policy is

Ws(T,∆) ≡ Π · Ps(T,∆)− c · Ds(T,∆) (A.6)

=

(
Π− 2c

λS

)
· (1− e−λST )− λS

(
Π− c

λS

)
· T · e−λS(T+∆).

A.2 Proof of Lemma 1

Proof of Lemma 1. Observe that Pd(T, 0) ≥ Ps(T, 0) is equivalent to:

(1 + λST ) ≥ e(λS−λD)T .

Note that the equality holds at T = 0. While the left hand side linearly

increases with the slope λS, he right-hand side exponentially increases and

the slope at T = 0 is λS − λD, which is lower than λS. Therefore, for small

enough T , Pd(T, 0) > Ps(T, 0), but there exists Ť > 0, which makes the two

sides equal. Then, we have Pd(T, 0) > Ps(T, 0) for all T < Ť and Pd(T, 0) <

Ps(T, 0) for all T > Ť .

A.3 Proof of Proposition 1

The Expected Surplus upon the Subproject Completion LetW 1
x rep-

resent the expected surplus when the �rst subproject is completed and the

30



remaining time is x. By following steps similar to those used in the derivation

of (A.3), we have

W 1
x ≡

(
Π− c

λS

)
· (1− e−λSx). (A.7)

Suppose that the subproject is completed at calendar time T − z, meaning

that z units of time remain until the original deadline. Then, the subproject

completion extends the deadline by ∆, giving the planner z + ∆ units of time

to complete the project. Therefore, the expected surplus in this situation is

W 1
z+∆.

The Expected Surplus without the Subproject Completion Now we

consider the situation that neither the subproject nor the main project has

been completed by calendar time T − z. Then, the (optimal) expected surplus

W 0,∆
z can heuristically be written as follows:

W 0,∆
z = max

az∈{0,1}

Π · λDaz · dz +W 1
z+∆ · λS(1− az) · dz − c dz

+ {1− λDaz · dz − λS(1− az) · dz} ·W 0,∆
z−dz.

By using a Taylor expansion, W 0,∆
z−dz = W 0,∆

z − Ẇ 0
z dz, canceling out W 0,∆

z

on both sides, and taking the limit as dz → 0, we obtain a Hamilton-Jacobi-

Bellman (HJB) equation:

Ẇ 0,∆
z = max

az∈{0,1}

[
λDaz · (Π−W 0,∆

z ) + λS(1− az) · (W 1
z+∆ −W 0,∆

z )− c
]
.

(HJBW )

Since the project is terminated at the deadline, W 0,∆
0 = 0. Then, by using

standard veri�cation arguments (e.g., Proposition 3.2.1 in Bertsekas (1995)), if

a function w : [0, T ]→ R is di�erentiable and satis�es (HJBW ) and w(0) = 0,

then, w(z) = W 0,∆
z .

The Expected Surplus of the One-switch Policy I now derive the ex-

pected surplus of the one-switch policy with an intermediate deadline S and

a deadline T . Denote Z ≡ T − S. The one-switch policy implies that az = 1

for all 0 ≤ z < Z, and az = 0 for all Z ≤ z ≤ T . Let Wsd
Z (z,∆) denote the
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expected surplus of this policy when the remaining time is z. The following

di�erential equations then hold, where Ẇ sd
Z =

∂W sd
Z (z,∆)

∂z
:

Ẇsd
Z (z,∆) = λS ·

(
W 1
z+∆ −Wsd

Z (z,∆)
)
− c for z ≥ Z, (A.8)

Ẇsd
Z (z,∆) = λD ·

(
Π−Wsd

Z (z,∆)
)
− c for z < Z. (A.9)

By solving this with Wsd
Z (0,∆) = 0, I derive

Wsd
Z (z,∆) =



Wd(z), if z ≤ Z,(
Π− 2c

λS

)
·
(
1− e−λS(z−Z)

)
+Wd(Z) · e−λS(z−Z)

− λS
(

Π− c

λS

)
· (z − Z) · e−λS(z+∆),

if z > Z.

(A.10)

Also note thatWsd
0 (z,∆) =Ws(z,∆) is the expected surplus of the sequential-

only policy and Wsd
T (z,∆) =Wd(z) is the expected surplus of the direct-only

policy.

We will prove the theorem by showing that there exists Z ∈ [0, T ] such

that Wsd
Z (z,∆) solves (HJBW ).

The Optimal Approach at the Deadline Note that W 1
∆ =

(
Π− c

λS

)
·

(1− e−λS∆) and W 0,∆
0 = 0. Then, at the deadline, the sequential approach is

preferred over the direct approach if and only if

λD(Π−W 0,∆
0 ) ≤ λS(W 1

∆ −W
0,∆
0 )

⇐⇒ λDΠ ≤ (λSΠ− c) · (1− e−λS∆). (A.11)

With simple algebra, we can derive that (A.11) is equivalent to ∆ ≥ ∆̄.

Optimal Policy Derivation I introduce two crucial lemmas, then complete

the proof of Proposition 1. The proof of the lemmas are in the following

subsection.
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Lemma 3. Suppose that λS = 2λD and ∆ < ∆̄. Then, there exists T̂ such

that (i) λD(Π−Wd(z)) > λS(W 1
z+∆ −Wd(z)) for all z < T̂ ; and (ii) λD(Π−

Wd(T̂ )) = λS(W 1
T̂+∆
−Wd(T̂ )).

Proof of Lemma 3. De�ne H1
z ≡ λS

(
W 1
z+∆ −Wd(z)

)
− λD

(
Π−Wd(z)

)
and

x ≡ e−λDz. Then, with some algebra, H1
z is equivalent to

H1(x) ≡ (λSΠ− c) · (1− e−λS∆ ·x
λS
λD )−λDΠ− (λS −λD) ·

(
Π− c

λD

)
· (1−x).

(A.12)

By using λS = 2λD, with some algebra, H1(x) can be rewritten as follows:

H1(x) = (λDΠ− c) · x− (λSΠ− c) · e−λS∆ · x2

De�ne

x̂ ≡ λDΠ− c
λSΠ− c

· eλS∆. (A.13)

Note that x̂ < 1 when ∆ < ∆. Additionally, observe that H1(x̂) = 0 and

H1(x) < 0 for all x̂ < x ≤ 1.

Now set T̂ ≡ − log(x̂)
λD

. Then, T̂ > z is equivalent to x > x̂, which implies

H1(x) < 0. Therefore, for all z < T̂ , λD(Π −Wd(z)) > λS(W 1
z+∆ −Wd(z)).

In addition, H1(x̂) = 0 implies λD(Π−Wd(T̂ )) = λS(W 1
T̂+∆
−Wd(T̂ )).

Lemma 4. Suppose that λS = 2λD and λS(W 1
Z+∆−Wd(Z)) ≥ λD(Π−Wd(Z))

for some Z ≥ 0. Then, λS(W 1
z+∆ −Wsd

Z (z,∆)) ≥ λD(Π −Wsd
Z (z,∆)) for all

z > Z.

Proof of Lemma 4. De�ne H2
z ≡ λS(W 1

z+∆−Wsd
Z (z,∆))−λD(Π−Wsd

Z (z,∆))

and y ≡ e−λS(z−Z). Note that, for any z > Z,

Wsd
Z (z,∆) =Wd(Z) +

(
Π− 2c

λS
−Wd(Z)

)
· (1− y)

+

(
Π− c

λS

)
· e−λS(Z+∆) · log(y) · y
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and

W 1
z+∆ = W 1

Z+∆ +

(
Π− c

λS
−W 1

Z+∆

)
· (1− y) .

Then, with some algebra, H2
z can be rewritten as follows:

H2(y) ≡ H2
Z + h1 · (1− y) + h2 · log(y) · y (A.14)

where

h1 ≡λS ·
(

Π− c

λS
−W 1

Z+∆

)
− (λS − λD) ·

(
Π− 2c

λS
−Wd(Z)

)
,

h2 ≡
(

Π− c

λS

)
· e−λS(Z+∆) > 0.

Observe that

H ′′2 (y) = −h2

y
< 0,

i.e., H2 is strictly concave. By the assumption, we have H2(1) = H2
S ≥ 0. In

addition, we have

lim
y→0

H2(y) = λS

(
Π− c

λS

)
− λDΠ− (λS − λD)

(
Π− 2c

λS

)
=
λS − 2λD

λS
c = 0.

(A.15)

Then, by using the strict concavity of H2, H2(1) ≥ 0 and limy→0H2(y) = 0,

we have H2(y) ≥ 0 for all y ∈ (0, 1). Therefore, λS(W 1
z+∆ − Wsd

Z (z,∆)) ≥
λD(Π−Wsd

Z (z,∆)) for all z > Z.

Proof of Proposition 1. (a) Suppose that ∆ ≥ ∆̄. From (A.11) and

Wd(0) = 0, we have λS(W 1
∆ − Wd(0)) ≥ λD(Π − Wd(0)). Then, by

Lemma 4, λS(W 1
z+∆ −Wsd

0 (z,∆)) ≥ λD(Π −Wsd
0 (z,∆)) for all z > 0.

Then, by (A.8), Ws
z,∆ = Wsd

0 (z,∆) solves (HJBW ) for all z ∈ R+, i.e.,

the sequential-only policy is optimal.

(b) Suppose that ∆ < ∆̄. Let T̂ be the time de�ned in Lemma 3. If T < T̂ ,

λD(Π−Wd(z)) > λS(W 1
z+∆ −Wd(z)) for all z ∈ [0, T ]. Then, by (A.9),
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Wd(z) solves (HJBW ) for all z ∈ [0, T ], i.e., the direct-only policy is

optimal.

Now consider the case with T ≥ T̂ . Note that Wsd
T̂

(z,∆) = W d
z for all

z ∈ [0, T̂ ]. From Lemma 3, we have λD(Π −Wsd
T̂

(z,∆)) > λS(W 1
z+∆ −

Wsd
T̂

(z,∆)) for all z ∈ (T̂ , T ]. Then, by (A.9), Wsd
T̂

(z,∆) solves (HJBW )

for all z > T̂ . In addition, we have λD(Π −Wsd
T̂

(T̂ ,∆)) = λS(W 1
T̂+∆
−

Wsd
T̂

(T̂ ,∆)). By applying Lemma 4 for Z = T̂ , we have λS(W 1
z+∆ −

Wsd
T̂

(z,∆)) ≥ λD(Π − Wsd
T̂

(z,∆)) for all z > T̂ . Then, by (A.8),

Wsd
T̂

(z,∆) solves (HJBW ) for all z > T̂ . Therefore, Wsd
T̂

(z,∆) solves

(HJBW ) for all z ∈ [0, T ], i.e., the one-switch policy with T − T̂ is opti-

mal.

B Contracts

At the beginning of the game, the principal o�ers a contract to the agent

and fully commits to all contractual terms. If the agent rejects the o�er, the

principal and the agent receive zero payo�s. Note that if the agent has not

completed either the main project or the subproject, the calendar time is the

only relevant variable summarizing the public history.

A (deterministic) contract is denoted by Γ ≡
{
T, {at, bt, Rt, Γ̂

t}0≤t≤T

}
,

where each variable is de�ned as follows at the calendar time t:12

1. T ∈ R+ ∪ {∞}: the deadline date at which the project is terminated

absent the completion of the main project or the subproject. T = ∞
means that no deadline is included in the contract;

2. at ∈ {0, 1}: the principal's choice of an approach at t;

3. bt ∈ [0, 1]: the agent's recommended e�ort at t;

12See Remark 2 for discussion on deterministic and mixed contracts.
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4. Rt ≥ 0: the monetary payment from the principal to the agent for the

success of the main project at t;13

5. Γ̂t ≡ {T t, {bts, Rt
s}t≤s≤T t}: an updated contract when the subproject is

completed at t;

(a) T t ∈ {Ť : Ť ≥ t} ∪ {∞}: the deadline date at which the project

is terminated;

(b) bts ∈ [0, 1]: the agent's recommended e�ort at time s ≥ t;

(c) Rt
s ≥ 0: the monetary payment from the principal to the agent for

the completion of the main project at time s.

Consider the case where the subproject is completed at time t. Then, the

updated contract Γ̂t will be executed. In this case, the agent's admissible

action space is B̂t ≡ {{b̌s}t≤s≤T t : b̌s ∈ [0, 1]}. The agent's action pro�le

b̃t ≡ {b̃ts}t≤s≤T t ∈ B̂t induces a probability distribution Pb̃t over a main project

completion date τm. Let Eb̃t denote the corresponding expectation operator.

When the agent adheres to the recommended action of Γ̂t, the principal's

expected utility at time t is given by

P̂ t(Γ̂t) = Ebt
[(

Π−Rt
τm

)
· 1{t≤τm≤T t} −

∫ T t∧τm

t

c ds

]
, 14

where the �rst term in the expectation is the net pro�t from the success and

the second term is the cumulative operating cost. The agent's expected utility

is given by

Û t(Γ̂t) = Ebt
[
Rt
τm · 1{t≤τm≤T t} +

∫ T t∧τm

t

φ(1− bts)ds

]
,

13Since both the principal and the agent are risk neutral and do not discount the future,
without loss of generality, all monetary payments to the agent can be backloaded (see, e.g.,
Ray, 2002). The nonnegativity of Rt is due to limited liability.

14For each x and y, let x ∧ y denote the minimum of x and y, and let x ∨ y denote the
maximum of x and y.
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where the �rst term is the payo� from the success and the second term is the

bene�t from shirking.

Now consider the problem at time 0. The agent's admissible action space

(prior to any completion) is B ≡ {{b̌t}0≤t≤T : b̌t ∈ [0, 1]}. In this case, any

completion depends not only on the agent's e�ort (b̃t) but also the principal's

choice of approach (at). Then, a pair of actions by the principal and the

agent, (a, b̃), induces a probability distribution Pa,b̃ over a pair of completion

dates for the main project and the subproject (τm, τs). Let Ea,b̃ denote the

corresponding expectation operator. If the agent adheres to the recommended

actions of Γ, the principal's (ex ante) expected utility is given by

P0(Γ) = Ea,b
[
(Π−Rτm) · 1{τm<τs∧T} + P̂τs(Γ̂τs) · 1{τs<τm∧T} −

∫ T∧τm∧τs

0

c dt

]
,

(B.1)

where the �rst term is the net pro�t from the main project completion, the

second term is the expected payo� from the subproject completion at time

τs, and the last term is the cumulative operating cost. The agent's expected

utility is given by

U0(Γ) = Ea,b
[
Rτm · 1{τm≤T} + Û τs(Γ̂τs) · 1{τs<τm∧T} +

∫ T∧τm∧τs

0

φ(1− bt) dt
]
,

(B.2)

where the �rst term is the payo� from the main project completion, the second

term is the expected payo� from the subproject completion at time τs, and the

last term is the bene�t from shirking. By using the agent's expected payo�s,

I de�ne incentive compatibility (IC) of contracts as follows.

De�nition 4. A contract Γ =
{
T, {at, bt, Rt, Γ̂

t}0≤t≤T

}
is incentive compatible

if

1. for all t ≤ T , the recommended e�ort pro�le {bts}t≤s≤T t in the updated

contract Γ̂t maximizes the agent's expected utility at time t, i.e.,

Û t(Γ̂t) = max
b̃∈B̂t

Eb̃
[
Rt
τm · 1{τm≤T t} +

∫ T t∧τm

t

φ(1− b̃s)ds

]
.
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2. the recommended action pro�le {bt}0≤t≤T maximizes the agent's ex-

pected utility at time 0, i.e.,

U0(Γ) = max
b̃∈B

Ea,b̃
[
Rτm · 1{τm≤T} + Û τs(Γ̂τs) · 1{τs<τm∧T} +

∫ T∧τm∧τs

0

φ(1− b̃t) dt
]
.

The objective of the principal is to �nd a contract Γ that maximizes her ex

ante expected utility P0(Γ) subject to the incentive compatibility constraint

and the individual rationality constraint, i.e., U0(Γ) ≥ 0. Designate such a

contract as an optimal contract.

C Proofs for Section 4

In this section, I provide the proof for the value function characterization

when there is no e�ciency loss from splitting the project (Proposition 3).

I begin by recursively formulating the agent's and the principal's problems.

Then, I explore some properties of the value function candidate suggested in

Proposition 3, including that this value function can be implemented by a one-

switch contract. Based on these properties, I prove Proposition 3 in Section

C.3. I also provide some properties of the thresholds for Π, which are necessary

in the proof of Proposition 2, in Section C.4.

C.1 Recursive Formulation

C.1.1 The Agent's Problem

In this subsection, I formally derive the agent's continuation utility and the

Hamilton-Jacobi-Bellman (HJB) equation of it.

I begin by specifying the probability distribution functions for possible

events given a pro�le of approaches a = {as}t≤s≤T and an admissible action

pro�le b ∈ Bt conditional on no completion has made by time t. The proba-

bility that neither the main project nor the subproject is completed by time
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T is f(a, b; t, T ) where

f(a, b;x, y) ≡ e−λD
∫ y
x albldl · e−λS

∫ y
x (1−al)bldl.

Next, the probability density that the main project is completed at time s

and the subproject is not completed by that time (s = τm < τs) is λDasbs ·
f(a, b; t, s). Similarly, the probability density that the subproject is completed

at time s and the main project is not completed by that time (s = τs < τm)

is λS(1− as)bs · f(a, b; t, s). Last, the probability density that either the main

project or the subproject is completed at time s and the other has not arrived

by then, i.e., τs ∧ τm = s, is (λDas + λS(1− as))bs · f(a, b; t, s).

Based on the above results, we can derive that

Ea,b
[
Rτm · 1{τm≤τs∧T} | t ≤ τm ∧ τs

]
=

∫ T

t

Rs · λDasbs · f(a, b; t, s)ds,

Ea,b
[
Ûτs(Γ̂

τs) · 1{τs<τm∧T} | t ≤ τm ∧ τs
]

=

∫ T

t

Ûs(Γ̂
s) · f(a, b; t, s)ds.

Observe that d
ds
f(a, b; t, s) = −(λDas + λS(1 − as))bs · f(a, b; t, s). By using

integration by parts, we have

Ea,b
[∫ T∧τm∧τs

t

φ(1− bs) | t ≤ τm ∧ τs
]

=

∫ T

t

φ(1− bs) · f(a, b; t, s)ds.

Given a contract Γ, the agent's maximized continuation utility at time t, Ut(Γ),

can be derived as follows:

Ut(Γ) ≡ sup
b̃∈Bt

∫ T

t

[
Rs · λDasb̃s + Ûs(Γ̂

s) · λS(1− as)b̃s + φ(1− b̃s)
]
f(a, b̃; t, s)ds,

(C.1)

where Bt ≡ {{b̃s}t≤s≤T : b̃s ∈ [0, 1]}.
Also note that UT (Γ) = 0 since the contract is terminated at time T .

The following lemma shows that the HJB equation (HJBPK) with a boundary

condition uT = 0 characterizes the evolution of the continuation utility Ut(Γ).

Lemma 5. Given a contract Γ, suppose that a continuous and di�erentiable

39



process {ut}0≤t≤T satis�es uT = 0

0 = max
b̃t∈[0,1]

u̇t + φ(1− b̃t) + (Rt − ut)λDatb̃t + (utS − ut)λS(1− at)b̃t. (HJBPK)

where u̇t ≡ dut
dt
. Then, ut = Ut(Γ).

Proof of Lemma 5. The proof is inspired by Proposition 3.2.1 in Bertsekas

(1995). Consider an arbitrary admissible action b̃ ∈ Bt. By rearranging

(HJBPK), we can derive that

−u̇s + (λDas + λS(1− as))b̃sut ≥ RsλDasb̃s + usSλS(1− as)b̃s + φ(1− b̃s)

and it is equivalent to

d

ds
[−us · f(a, b; t, s)] ≥

[
(RsλDas + usSλS(1− as)) b̃s + φ(1− b̃s)

]
· f(a, b; t, s).

By integrating the above inequality from t to T and using uT = 0, we can

derive that

ut ≥
∫ T

t

[
(RsλDas + usSλS(1− as)) b̃s + φ(1− b̃s)

]
· f(a, b̃; t, s)ds

for all b̃ ∈ Bt.
Suppose that b∗ ∈ Bt attains the maximum in the equation (HJBPK) for

all 0 ≤ t ≤ T . Then, we have

ut =

∫ T

t

[(RsλDas + usS(1− as))λSb∗s + φ(1− b∗s)] · f(a, b∗; t, s)ds

≥
∫ T

t

[
(RsλDas + usSλS(1− as)) b̃s + φ(1− b̃s)

]
· f(a, b̃; t, s)ds

for all b̃ ∈ Bt. Therefore, by (C.1), we have ut = Ut(Γ).
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C.1.2 The Principal's Problem

The Value Function upon the Subproject Completion Since this case

only requires one more breakthrough, it is identical to the single-stage bench-

mark of Green and Taylor (2016a). They show that the principal's value

function VS is characterized as follows:

VS(utS) = W 1
utS/φ
− utS =

(
Π− c

λS

)(
1− e−

λS
φ
utS

)
− utS. (C.2)

The Value Function without the Subproject Completion I now con-

sider the principal's problem without the subproject completion. I begin by

considering the incentive compatibility condition. To make a contract incen-

tive compatible, at each point of time, the recommended e�ort level should

coincide with the agent's choice in (HJBPK), that is,

b ∈ arg max
b̃∈[0,1]

φ(1− b̃) + (R− u)λDab̃+ (uS − u)λS(1− a)b̃. (IC)

In addition, since (HJBPK) is linear in b̃, it can be rewritten as follows:

u̇t = −
[
φ ∨

(
(Rt − ut)λDat + (utS − ut)λS(1− at)

)]
. (C.3)

I now explore how the principal's value function evolves. Note that V (0) =

0 since the agent will not participate in the contract when the continuation

utility is zero. This will serve as a boundary condition. The value function

V (ut) can be heuristically written as follows:

V (ut) = max
Rt,utS ,at,bt

− cdt+ (Π−Rt)λDatbtdt+ VS(utS)λS(1− at)btdt

+ (1− λDatbtdt− λS(1− at)btdt)V (ut+dt)
.

By using V (ut+dt) = V (ut)+V ′(ut)u̇tdt+o(dt), canceling V (ut) on both sides,

taking the limit as dt→ 0 and plugging (C.3) in, we obtain an HJB equation:

0 = max
R,uS ,a,b

J (V (·), R, uS, a, b). (HJBV )
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where

J (V (·), R, uS, a, b) ≡− c+ (Π−R− V (u))λDab+ (VS(uS)− V (u))λS(1− a)b

− [φ ∨ {(R− u)λDa+ (uS − u)λS(1− a)}]V ′(u) (C.4)

Then, the principal's problem is to solve (HJBV ) subject to (IC) with the

boundary condition V (0) = 0. The following lemma shows that the solution

of the problem maximizes the principal's expected payo� subject to a promise

keeping constraint U0(Γ) = u.

Lemma 6 (Veri�cation Lemma). Suppose that a di�erentiable and concave

function V̄ solves (HJBV ) subject to (IC) with the boundary condition V̄ (0) =

0. Then, for any incentive-compatible contract Γ with U0(Γ) = u,

V̄ (u) ≥ P0(Γ).

Proof of Lemma 6. Consider an arbitrary (deterministic) incentive-compatible

contract Γ where the agent's expected payo� is given by ut. The payo� to the

principal under Γ is

P0(Γ) =

∫ T

0

(Π−Rt − c · t) · λDatbtf(a, b; 0, t)dt

+

∫ T

0

(VS(uS,t)− c · t) · λS(1− at)btf(a, b; 0, t)dt− c · T · f(a, b; 0, T )

=

∫ T

0

((Π−Rt)λDatbt + VS(uS,t)λS(1− at)bt − c) f(a, b; 0, t)dt

where uS,t = Ût(Γ̂
S).

Since Ṽ solves the HJB equation, we have

0 ≥− c+ (Π−Rt − Ṽ (ut))λDatbt + (VS(uS,t)− Ṽ (ut))λS(1− at)bt
− [φ ∨ {(Rt − ut)λDat + (uS,t − ut)λS(1− at)}] Ṽ ′(ut).
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By using (C.3), rearranging, and multiplying by f(a, b; 0, t), we can obtain

that

(λDatbt + λS(1− at)bt)f(a, b; 0, t) · Ṽ (ut)− f(a, b; 0, t) · Ṽ ′(ut)u̇t

≥f(a, b; 0, t) ((Π−Rt)λDatbt + VS(uS,t)λS(1− at)bt − c)
(C.5)

Note that

d

dt

(
−f(a, b; 0, t)Ṽ (ut)

)
= (λDatbt+λS(1−at)bt)f(a, b; 0, t)·Ṽ (ut)−f(a, b; 0, t)·Ṽ ′(ut)u̇t.

Then, by integrating (C.5) over [0, T ] and noting that f(a, b; 0, 0) = 1, uT = 0

and Ṽ (0) = 0, we have

Ṽ (u0) = Ṽ (u0)− f(a, b; 0, T )Ṽ (uT )

≥
∫ T

0

f(a, b; 0, t) · ((Π−Rt)λDatbt + VS(uS,t)λS(1− at)bt − c) dt = P0(Γ).

Therefore, Ṽ (u0) is greater than or equal to any deterministic contract

where the agent's expected payo� is equal to u0. Since Ṽ is assumed to be

concave, it is greater than or equal to any randomized contract.

Additionally, the following lemma shows that the agent is working when

V ′(u) ≥ −1.

Lemma 7. Suppose that V ′(u) ≥ −1. The solution of (HJBV ) subject to (IC)

involves b = 1.

Proof of Lemma 7. Assume that b∗ < 1 solves (HJBV ) subject to (IC). Ob-

serve that ((Π−R−V (u))λDa+(VS(uS)−V (u))λS(1−a))b∗ = 0 from (HJBV ).

This is because (Π − R − V (u))λDa + (VS(uS) − V (u))λS(1 − a) = 0 when

b∗ ∈ (0, 1).

Also note that (−φ+ (R− u)λDa+ (uS − u)λS(1− a)) b∗ = 0 from (HJBPK).

Then, we have u̇ = −φ. By plugging this into (HJBV ), we have 0 = −c −
φV ′(u), i.e., V ′(u) = − c

φ
< −1. It contradicts the assumption of V ′(u) ≥ −1.

Therefore, b should be equal to 1 for the solution of (HJBV ) subject to (IC).
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C.2 Value Function Candidates and Implementation

Lemma 8. The following statements hold.

(a) A direct-only contract with the deadline u
φ
implements a pair of expected

payo�s of the principal and the agent (V d(u), u) where

V d(u) ≡ Wd

(
u

φ

)
− u. (C.6)

(b) When 0 < u1 < u, a one-switch contract with the intermediate deadline
u−u1
φ

and the �nal deadline u
φ
implements (V sd(u|u1), u) where

V sd(u|u1) ≡ Wsd
u1/φ

(
u

φ
,

1

λS

)
− u. (C.7)

(c) A sequential-only contract with the deadline u
φ
implements (V sd(u|0), u).

(d) The following di�erential equations hold:

φV d′(u) = λD

(
Π− φ

λD
− u− V d(u)

)
− c, (C.8)

φV sd′(u|u1) = λS

(
VS(u+ φ

λS
)− V sd(u|u1)

)
− c. (C.9)

Together with Proposition 1, this lemma implies that (V(u), u)�de�ned

in (4.2)�can be implemented by one of the above three contracts. Moreover,

there exists û1 ≥ 0 such that V can be rewritten as follows:

V(u) =

V d(u), if u < û1,

V sd(u|û1), if u ≥ û1.
(C.10)

Speci�cally, û1 is chosen to be equal to φT̂ if 1
λS

< ∆, and 0 if 1
λS
≥ ∆. The

following lemma provides useful properties of V and û1.

Lemma 9. Suppose that λS = 2λD. The following statements hold.
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(a) if û1 > 0, V sd′(û1|û1) = V d′(û1) and V sd′(u|u) < V d′(u) for all u < u1,

and if û1 = 0, V sd′(0|0) ≥ V d′(0).

(b) V ′(u) ≥ −1 for all u ≥ 0.

(c) V is concave.

C.2.1 Proof of Lemmas

Proof of Lemma 8. (a) Let Γd(T ) denote a direct-only contract with the

deadline T . The agent's expected payo� is

U0(Γd(T )) =

∫ T

0

RτmλDe
−λDτmdτm =

∫ T

0

φ

(
T − τm +

1

λD

)
λDe

−λDτmdτm

=− φ (T − τm) e−λDτm
∣∣∣T
0

= φT.

Therefore, U0(Γd(
u
φ
)) = u.

Also note that the sum of the expected payo�s of the principal and the

agent should equal to the expected surplus from the direct-only policy

with a deadline of T :

P0(Γd(T )) + U0(Γd(T )) =Wd(T ).

Therefore,

P0

(
Γd

(
u

φ

))
=Wd

(
u

φ

)
− u = V d(u).

(b) Let Γsd(T1, T ) denote a contract with a switch from the sequential ap-

proach to the direct approach at T1 and the deadline T . The subcontract

at time t ≤ T1 is denoted by Γ̂sd(t|T1, T ). Then, the agent's expected
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payo� for the subcontract Γ̂sd(t|T1, T ) at time t is

Ut(Γ̂sd(t|T1, T )) =

∫ T+ 1
λS

t

φ

(
T +

1

λS
− τm +

1

λS

)
λSe

−λS(τm−t)dτm

=− φ
(
T +

1

λS
− τm

)
e−λS(τm−t)

∣∣∣T+ 1
λS

t

=φ

(
T +

1

λS
− t
)
.

Also note that∫ T1

0

Uτs(Γ̂sd(τs|T1, T ))λSe
−λSτsdτs =

∫ T1

0

φ(T +
1

λS
− τs)λSe−λSτsdτs

=− φ(T − τs)e−λSτs
∣∣T1
0

=φT − φ(T − T1)e−λST1 .

Then, the agent's expected payo� at time 0 is

U0(Γsd(T1, T )) =

∫ T1

0

Uτs(Γ̂sd(τs|T1, T ))λSe
−λSτsdτs

+ e−λST1
∫ T

T1

φ(T +
1

λD
− τm)λDe

−λD(τm−T1)dτm

=φT − φ(T − T1)e−λST1 − e−λST1
[
φ (T − τm) e−λD(τm−T1)

∣∣T
T1

]
=φT.

Thus, U0(Γsd(T1,
u
φ
)) = u.

As in the previous case, the sum of the expected payo�s of the principal

and the agent is equal to the one-switch policy with the intermediate

deadline T1, the deadline T , and the extension 1
λS
:

P0(Γsd(T1, T )) + U0(Γsd(T1, T )) =Wsd
T−T1(T,

1
λS

).

By plugging in T = u
φ
and T1 = u−u1

φ
, (C.7) holds.
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(c) Note that a sequential-only contract with a deadline T is equivalent

to a contract with a switch from the sequential approach to the direct

approach at T1 = T and a deadline T . Therefore, by the previous result,

a sequential-only contract with the deadline u
φ
implements (V sd(u|0), u).

(d) By the construction of Wd,

Ẇd(T ) = λD(Π−Wd(T ))− c, (C.11)

for all T ≥ 0. Similarly,

Ẇsd
T̂

(T, 1
λS

) = λS(W 1
T+ 1

λS

−Wsd
T̂

(T, 1
λS

))− c, (C.12)

for all T ≥ T̂ .

Using the de�nitions of V d, V sd and VS, (C.8) and (C.9) follow.

Proof of Lemma 9. (a) Suppose that û1 > 0, which implies that 1
λS

< ∆.

Now set ∆ = 1
λS
. In Lemma 3, T̂ is chosen to satisfy λD(Π−Wd(T̂ )) =

λS(W 1
T̂+ 1

λS

−Wd(T̂ )) and λD(Π−Wd(z)) > λS(W 1
z+ 1

λS

−Wd(z)) for all

z < T̂ .

Using Lemma 8 (d) and Wd(T̂ ) = Wsd
T̂

(T̂ , 1
λS

), we can derive that

V sd′(û1|û1) = V d′(û1) and V sd′(u|u) < V d′(u) for all u < û1.

When û1 = 0, and thereby 1
λS
≥ ∆, it follows from (A.11) that V sd′(û1|û1) ≥

V d′(û1).

(b) Since a longer the deadline increases the expected social surplus,W∗(T,∆)

is increasing in T . Therefore,

V ′(u) =
Ẇ∗(u

φ
, 1
λS

)

φ
− 1 ≥ −1.
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(c) If u ≤ û1,

V ′′(u) = V d′′(u) = −
(

Π− c

λD

)
λ2
D

φ2
e−

λD
φ
u < 0.

Now assume that u > û1. By using (C.11), (C.12) and V d′(û1) ≤
V sd′(û1|û1), we can derive that

Wd( û1
φ

) ≤ Π− c

λS − λD
− λS
λS − λD

(
Π− c

λS

)
e−

λS
φ
û1−1. (C.13)

Using (A.10), we can derive the followings though some algebra:

V sd′′(u|û1) =

(
λS
φ

)2

e
λS
φ

(û1−u)

[
Wd( û1

φ
)−

(
Π− 2c

λS

)
+ 2

(
Π− c

λS

)
e−

λS
φ
û1−1

]
−
(

Π− c

λS

)(
λS
φ

)3

(u− û1)e
−λS

φ
(u+ 1

λS
)

By plugging (C.13) in, we have

V sd′′(u|û1) ≤
(
λS
φ

)2

e
λS
φ

(û1−u)

[
λS − 2λD

λS(λS − λD)
c+

λS − 2λD
λS − λD

(
Π− c

λS

)
e−

λS
φ
û1−1

]
−
(

Π− c

λS

)(
λS
φ

)3

(u− û1)e
−λS

φ
(u+ 1

λS
)
. (C.14)

Then, from λS = 2λD, V ′′(u) = V sd′′(u|û1) ≤ 0 for all u ≥ û1.

C.3 Value Function Veri�cation (Proposition 3)

The goal of this subsection is to prove Proposition 3. Speci�cally, I show that

the value function de�ned in the previous section solves (HJBV ) subject to

(IC). To achieve this, I introduce functions that specify potential deviations

and then establish useful properties as a lemma, followed by the proof for

Proposition 3.
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First, de�ne

LD(u,R) ≡ J (V(·), R, ·, 1, 1) = λD(Π−R−V(u))−c−λD(R−u)V ′(u). (C.15)

Given u, maximizing this function with respect to R ≥ u + φ
λD

is equivalent

to maximizing the right hand side of (HJBV ) under the condition that b = 1

solves (HJBPK) with a = 1.

Similarly, de�ne

LS(u,w) ≡ J (V(·), ·, uS, 0, 1) = λS(VS(w)− V(u))− c− λS(w − u)V ′(u).

Given u, maximizing this function with respect to w ≥ u+ φ
λS

is equivalent to

maximize the right hand side of (HJBV ) under the condition that b = 1 solves

(HJBPK) with a = 0.

Lemma 10. Suppose that Π > c
λD

and λS = 2λD. Then, for any u ≥ 0,

LD(u,R) ≤ 0 for all R ≥ u+ φ
λD

, and LS(u,w) ≤ 0 for all w ≥ u+ φ
λS
.

Proof of Lemma 10. I begin by showing LD(u,R) ≤ 0 for all R ≥ u + φ
λD
.

Observe that
∂LD

∂R
= −λD(1 + V ′(u)) ≤ 0.

from Lemma 9 (b). Also note that

LD(u, u+ φ
λD

) =λD(Π− u− V(u))− c− φ(V ′(u) + 1)

=λD(Π−W∗(u
φ
, 1
λS

))− c− Ẇ∗(u
φ
, 1
λS

) ≤ 0.

The last inequality is due to (HJBW ). Therefore, LD(u,R) ≤ 0 for all R ≥
u+ φ

λD
.

For LS, observe that

∂LS

∂u
= −λS(w − u)V ′′(u) ≥ 0

by the concavity of V . Therefore, it is su�cient to check whether LS(u, u +
φ
λS

) ≤ 0 for all u ≥ 0.
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Note that for all u ≥ û1, L
S(u, u + φ

λS
) = 0 holds by (C.9). Now, suppose

that u < û1, thereby V(u) = V d(u). Using (C.9) and Lemma 9 (a), we have

LS(u, u+ φ
λS

) = φ(V sd′(u|u)− V d′(u)) < 0 for all u < û1.

Now I prove Proposition 3.

Proof of Proposition 3. I begin by showing that J becomes zero when the

value function V is utilized alongside contractual terms with binding ICs.

When u ≥ û1, V(u) = V sd(u|û1). Then, by (C.9),

J
(
V sd(u|û1), ·, u+ φ

λS
, 0, 1

)
= 0.

Likewise, when u < û1, V(u) = V d(u|), and by (C.8),

J
(
V d(u), u+ φ

λD
, ·, , 1, 1

)
= 0.

Next, by Lemma 9 (b), we have V ′(u) ≥ −1, which guarantees b = 1 by

Lemma 7. Additionally, Lemma 10 shows that J is nonpositive for any feasible

deviations. Therefore, V solves (HJBV ) subject to (IC).

The concavity of V is shown in Lemma 9 (c). If û1 = 0, V(u) = V sd(u|0) is

di�erentiable for all u ≥ 0. If û1 > 0, V d(u) is di�erentiable for all u < û1 and

V sd(u|û1) is di�erentiable for all u > û. By Lemma 9 (a), V is di�erentiable

at û1 as well. Also note that V(0) = 0. Therefore, by Lemma 6, for any incen-

tive compatible contract promising the agent u units of utility, the principal's

expected payo� is lower than or equal to V(u).

Last, by Lemma 8, there exists a contract implementing (V(u), u). There-

fore, V(u) is the principal's maximized expected payo� subject to the promise-

keeping constraint U0(Γ) = u and the incentive compatibility constraints.

C.4 Thresholds

In this section, I explain how to pin down the thresholds ΠD and ΠS and

provide some properties of them.
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First, recall that ΠS is the solution of 1
λS

= ∆. This gives us

1

λS
=

1

λS
log

[
λSΠS − c

(λS − λD)ΠS − c

]
⇔ λDΠS

c
=
e− 1

e− 2
≈ 2.392.

(C.16)

Also recall that the threshold is relevant to whether the switching point û1

is greater than u or not. Since V is concave, û1 ≤ u if and only if V ′(û1) ≥ 0.

Observe that by using the formula of V d and (A.13), we can derive that

V ′(û1) = V d′(û1) =
(λDΠ− c)2

φ · (λSΠ− c)
e− 1.

By solving the equation making the above equal to zero, it follows that V ′(û1) ≥
0 if and only if

Π ≤ ΠD ≡
c

λD
·
c · e+ φ+

√
φ(c · e+ φ)

c · e
. (C.17)

I conclude the section by showing that ΠD lies between ΠF and ΠS.

Lemma 11. When λS = 2λD, ΠD ∈ (ΠF ,ΠS).

Proof of Lemma 11. From φ ≤ c, we have

λDΠD

c
≤ (e+ 1) +

√
e+ 1

e
≈ 2.077.

Therefore, by (C.16), ΠD < ΠS.

Next, observe that

λD(ΠD − ΠF )

c
=
−φ(e− 1) +

√
φ(c · e+ φ)

c · e
≥ φ(

√
e+ 1− (e− 1))

c · e
.

Since
√
e+ 1− (e− 1) ≈ .21 > 0, ΠD > ΠF .
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Online Appendix for

�Managing a Project by Splitting it into Pieces�

Yonggyun Kim

In this online appendix, I provide the proofs for Section 5, speci�cally the value function

and optimal contract characterizations when there is an e�ciency loss from splitting the

project (Proposition 6, Proposition 4, and Proposition 5). Some results in Appendix C can

still be utilized (e.g., Lemma 5, Lemma 6, Lemma 7, and Lemma 8) as they do not use the

parametric assumption λS = 2λD.

OA.1 Value Function Characterization

I begin by specifying a value function that can be implemented by a two-switch contract

de�ned in De�nition 3.

Lemma 12. The following statements hold.

(a) When 0 < u1 < u2 < u, a two-switch contract with the intermediate deadlines u−u2
φ

,
u−u1
φ

and the �nal deadline u
φ
implements (V dsd(u|u1, u2), u) where

V dsd(u|u1, u2) ≡
(

Π− c

λD

)(
1− e

λD
φ

(u2−u)
)

+ (V sd(u2|u1) + u2)e
λD
φ

(u2−u) − u.

(OA.1.1)

(b) The following di�erential equation holds:

φV dsd′(u|u1, u2) = λD

(
Π− φ

λD
− u− V dsd(u|u1, u2)

)
− c. (OA.1.2)

Proof of Lemma 12. (a) Let Γdsd(T1, T2, T ) denote a contract with two switches at T1 and

T2 and a deadline T . Note that at time T1 (if the project has not been successful),

the remaining contract is equivalent to Γsd(T2 − T1, T − T1). Recall that U0(Γsd(T2 −
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T1, T − T1)) = φ(T − T1). Then, the agent's expected payo� at time 0 is

U0(Γdsd(T1, T2, T )) =

∫ T1

0

φ(T + 1
λD
− τm)λDe

−λDτmdτm

+ e−λST1U0(Γsd(T2 − T1, T − T1))

=φT − φ(T − T1)e−λDT1 + e−λDT1φ(T − T1) = φT.

Thus, U0(Γdsd(T1, T2,
u
φ
)) = u.

Also note that

P0(Γdsd(T1, T2, T )) + U0(Γdsd(T1, T2, T ))

=

∫ T1

0

(Π− cτm)λDe
−λDτmdτm − cT1e

−λDT1

+ e−λDT1(P0(Γsd(T2 − T1, T − T1)) + U0(Γsd(T2 − T1, T − T1))).

Recall that U0(Γsd(T
′
2, T

′
1)) + P0(Γsd(T

′
2, T

′
1)) = V sd(φT ′1|φ(T ′1 − T ′2)) + φ(T ′1 − T ′2). By

plugging in T ′1 = T − T1, T
′
2 = T2 − T1, φT1 = u − u2 and φT2 = u − u1, the right

hand side of the above equation becomes V dsd(u) + u, thus, P0(Γdsd(T1, T2, T )) =

V dsd(u|u1, u2)− u.

(b) Last, by taking the derivative of (OA.1.1) and multiplying by φ, we have

φV dsd′(u|u1, u2) =λD

(
Π− c

λD

)
e
λD
φ

(u2−u) − λD
(
V sd(u2|u1) + u2

)
e
λD
φ

(u2−u) − φ

=λD

(
Π− φ

λD
− u− V dsd(u|u1, u2)

)
− c,

thus, (OA.1.2) holds.

Based on the intuition presented in the main text, I conjecture the value function de�ned

as follows.

V(u) =


V d(u), if 0 ≤ u ≤ û1,

V sd(u|û1), if û1 < u ≤ û2,

V dsd(u|û1, û2), if û2 < u.

(OA.1.3)

The following proposition shows that there exist û1 and û2 such that the above three value
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functions are smoothly pasted, and the resulting function is the principal's value function.

Proposition 6. Suppose that η is less than 1.

(a) (Smooth Pasting) There exist û2 ≥ û1 ≥ 0 such that

i. V d′(u) > V sd′(u|u) for all 0 ≤ u < û1;

ii. V sd′(û1|û1) ≥ V d′(û1), and if the equality holds, V sd′′(û1|û1) > V d′′(û1);

iii. V sd′(u|û1) > V dsd′(u|û1, u) for all û1 < u < û2;

iv. V dsd′(û2|û1, û2) = V sd′(û2|û1) and V dsd′′(û2|û1, û2) > V sd′′(û2|û1);

v. V dsd′(u|û1, û2) > 1
φ

[
λS(VS(u+ φ

λS
)− V dsd(u|û1, û2))− c

]
for all u > û2.

(b) (Large Loss) If η ≤ 1
e−1

, there exists Π̃M(η) such that

i. û2 = û1 = 0 if Π̃M(η) ≥ Π > c
λD

;

ii. û2 > û1 > 0 if Π > Π̃M(η).

(c) (Small Loss) If 1
e−1

< η < 1, there exist Π̃S(η) > Π̃M(η) such that

i. û2 = û1 = 0 if Π̃M(η) ≥ Π > c
λD

;

ii. û2 > û1 > 0 if Π̃S(η) ≥ Π > Π̃M(η);

iii. û2 > û1 = 0 if Π ≥ Π̃S(η).

(d) The function V de�ned in (OA.1.3), with û1 and û2 derived in (a), serves as the

principal's value function.

OA.1.1 Proof of Proposition 6

I begin by identifying which approach will be chosen at the deadline. Note that the direct

approach is chosen at the deadline if and only if V d′(0) > V sd′(0|0). The following lemma

provides the parametric condition for this.

Lemma 13. If η ≤ 1
e−1

, the inequality V d′(0) > V sd′(0|0) always holds. If η > 1
e−1

, V d′(0) >

V sd′(0|0) is equivalent to

Π < Π̃S(η) ≡ e− 1

η(e− 1)− 1
· c
λD

.

Moreover, if Π = Π̃S(η), then V d′(0) = V sd′(0|0) and V d′′(0) < V sd′′(0|0).
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Proof of Lemma 13. By V d(0) = V sd(0|0) = 0 and Lemma 8 (d), we have

φV d′(0) = λDΠ− φ− c,

φV sd′(0|0) = λSVS(
φ

λS
)− c = λS

(
Π− c

λS

)
(1− e−1)− φ− c.

Therefore, V d′(0) > V sd′(0|0) is equivalent to:

(η(e− 1)− 1)λDΠ < c(e− 1).

Therefore, when η ≤ 1
e−1

, V d′(0) > V sd′(0|0) always holds, and when η > 1
e−1

, V d′(0) >

V sd′(0|0) is equivalent to Π < Π̃S(η).

Next, assume that η > 1
e−1

and Π = Π̃S(η). With some algebra, it follows that

φ2V sd′′(0|0)− φ2V d′′(0) = λDc

[
(e− 1)η2

(e− 1)η − 1

]
.

The right hand side is positive from η > 1
e−1

, thus, V sd′′(0|0) > V d′′(0).

Next, I establish a condition under which the direct approach is always employed. When

this condition does not hold, a switch from the direct to the sequential approach occurs. I

show the existence of the switching point û1.

Lemma 14. There exists Π̃M(η) ≥ 2c
λS

with Π̃M(1) = 2c
λS

= c
λD

such that the following

statements hold.

(a) If c
λD
≤ Π < Π̃M(η), V d′(u) > V sd′(u|u) for all u ≥ 0.

(b) Suppose that one of the following statements hold: (i) η ≤ 1
e−1

and Π > Π̃M(η); (ii)

η > 1
e−1

and Π̃S(η) ≥ Π > Π̃M(η). Then, there exists û1 > 0 such that V d′(û1) =

V sd′(û1|û1), V d′′(û1) < V sd′′(û1|û1) and V d′(u) > V sd′(u|u) for all u ∈ [0, û1);

Proof of Lemma 14. De�ne x ≡ e−
λD
φ
u. Using (C.8) and (C.9), φV sd′(u|u)−φV d′(u) can be

expressed in the form of H1(x) with ∆ = 1
λS
, as de�ned in (A.12) in the proof of Lemma 3. I

also consider this as a function of Π. With the de�nition of η, it can be rewritten as follows:

H̃1(x; Π) ≡ −{(η + 1)λDΠ− c} e−1xη+1 + η(λDΠ− c)x− (1− η)c. (OA.1.4)
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Observe that

∂2H̃1

∂x2
(x; Π) = −(η + 1)η {(η + 1)λDΠ− c} e−1xη−1,

thus H̃1 is a strict concave function in x when Π ≥ c
λD
. Let x∗(Π) be the solution of

maxxH1(x; Π) subject to 0 ≤ x ≤ 1. Then, when Π ≥ c
λD
, from the �rst order condition, we

can derive that

x∗(Π) =

[
η(λDΠ− c)

(η + 1){(η + 1)λDΠ− c}e−1

] 1
η

.15 (OA.1.5)

Now de�ne

h(Π) ≡ H̃1(x∗(Π); Π) = K

(
λDΠ− c
λSΠ− c

) 1
η

(λDΠ− c)− (1− η)c

where K = η2

η+1

(
ηe
η+1

) 1
η
. Observe that

h

(
2c

λS

)
=(1− η)c

[
η2

(η + 1)2

(
η(1− η)e

(η + 1)2

) 1
η

− 1

]
< 0

from η < 1 and η(1− η)e ≤ e
4
< 1 ≤ (η + 1)2. In addition, lim

Π→∞
h(Π) =∞ and

h′(Π) = K(λDΠ− c)
1
η (λSΠ− c)−

1
η
−1λDλSΠ > 0.

Therefore, there exists a unique Π such that h(Π) = 0 and Π ≥ 2c
λS
. Let the solution of

h(Π) = 0 with Π ≥ 2c
λS

be Π̃M(η). Also note that when η = 1, h( 2c
λS

) = 0 thus Π̃M(1) = 2c
λS

=
c
λD
.

(a) Suppose that c
λD
≤ Π < Π̃M(η). We have 0 > h(Π) = H̃1(x∗(Π); Π) ≥ H̃1(x; Π) for all

0 ≤ x ≤ 1. It is equivalent to V d′(u) > V sd′(u|u) for all u ≥ 0 in this case.

(b) First, suppose that η ≤ 1
e−1

and Π > Π̃M(η). Then, we have 0 < h(Π) = H̃1(x∗(Π); Π).

In addition, by Lemma 13, we have H̃1(1; Π) = φ(V sd′(0|0) − V d′(0)) < 0. Then, by

concavity of H̃1 w.r.t. x and ∂H̃1

∂x
(x∗(Π); Π) = 0, there exists x1 ∈ (x∗(Π), 1] such

that H̃1(x1; Π) = 0, ∂H̃1

∂x
(x1; Π) < 0 and H̃1(x; Π) < 0 for all x ∈ (x1, 1]. By de�ning

15When Π ≤ (η+1)e−1−η
(η+1)2e−1−η ·

c
λD

, the solution of the maximization problem max0≤x≤1H1(x; Π) is x∗(Π) = 1.

However, we can show that (η+1)e−1−η
(η+1)2e−1−η < 1 for any 0 < η, which implies that we can focus on the interior

solution when Π ≥ c
λD

5



û1 ≡ − φ
λD

log x1, the above conditions can be translated into: V d′(û1) = V sd′(û1|û1),

V d′′(û1) < V sd′′(û1|û1) and V d′(u) > V sd′(u|u) for all u ∈ [0, û1).

Next, suppose that η > 1
e−1

. Note that by the de�nition of Π̃S(η), if Π ≥ Π̃S(η),

H̃1(1; Π) ≥ 0. It implies that h(Π) ≥ H̃1(1; Π) ≥ 0 and Π ≥ Π̃M(η). Therefore, we

can see that Π̃S(η) ≥ Π̃M(η). If Π̃S(η) ≥ Π > Π̃M(η), we also have H̃1(x∗(Π); Π) >

0 > H̃1(1; Π). By using the same arguments as above, we can show that there exists

û1 > 0 such that V d′(û1) = V sd′(û1|û1), V d′′(û1) < V sd′′(û1|û1) and V d′(u) > V sd′(u|u)

for all u ∈ [0, û1).

The following lemma shows that when there is an e�ciency loss from splitting the project

and the sequential approach is employed, there will be an additional switching point, û2.

Lemma 15. Suppose that η < 1, Π > c
λD

and one of the followings hold: (i) V d′(û1) <

V sd′(û1|û1); (ii) V d′(û1) = V sd′(û1|û1) and V d′′(û1) < V sd′′(û1|û1). Then, there exists û2 >

û1 such that V sd′(û2|û1) = V dsd′(û2|û1, û2) and V sd′′(û2|û1) < V dsd′′(û2|û1, û2) and such û2

is unique. Moreover, V sd′(u|û1) > V dsd′(u|û1, u) for all u ∈ (û1, û2).

Proof of Lemma 15. Using (OA.1.2), (C.9) and V dsd(u|û1, u) = V sd(u|û1), φV dsd′(u|û1, u)−
φV sd′(u|û1) can be rewritten as follows:

λDΠ− λS
{
VS(u+ φ

λS
) + u+ φ

λS

}
+ (λS − λD)(V sd(u|û1) + u).

By performing a similar derivation as in (A.14) and using η = λS
λD
− 1 and y ≡ e−

λS
φ

(u−û1),

the above expression can be further rewritten as follows:

H̃2(y) ≡ 1− η
1 + η

c+ (λSΠ− c)e−1−λS
φ
û1

[
1 +

η

1 + η
log y

]
y

+η

[
1− η
1 + η

c− (λDΠ− c)e−
λD
φ
û1

]
y.

(OA.1.6)

Note that H̃2(1) = φV dsd′(û1|û1, û1) − φV sd′(û1|û1) = φV d′(û1) − φV sd′(û1|û1) ≤ 0 by

assumption. By di�erentiating H̃2 twice, we have

H̃ ′′2 (y) =
η

1 + η
(λSΠ− c)e−1−λS

φ
û1 1

y
> 0.
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Since Π > c
λD

> c
λS
, H̃2 is strictly convex in y. Also note that

lim
y→0

H̃2(y) =
1− η
1 + η

c > 0.

By the convexity of H̃2, there exists y2 ∈ (0, 1) such that (i) H̃2(y) < 0 for all y ∈ (y2, 1), (ii)

H̃2(y2) = 0, and (iii) H̃ ′2(y2) < 0. Let û2 = û1 − φ
λS

log y2. Then, from (i) and (ii), we have

V sd′(u|û1) > V dsd′(u|û1, u) for all u ∈ (û1, û2) and V sd′(û2|û1) = V dsd′(û2|û1, û2). Addition-

ally, since y is decreasing in u, H̃ ′2(y2) < 0 implies that V sd′′(û2|û1) < V dsd′′(û2|û1, û2).

Next, when there is a switching point û2, the following lemma shows that the direct

approach is employed for all u > û2.

Lemma 16. Suppose that Π > c
λD

, V sd′(û2|û1) = V dsd′(û2|û1, û2) and V sd′′(û2|û1) <

V dsd′′(û2|û1, û2). Then, λS

(
VS(u+ φ

λS
)− V dsd(u|û1, û2)

)
− φV dsd′(u|û1, û2) − c < 0 for all

u > û2.

Proof of Lemma 16. By di�erentiating (C.8) and (C.9), we have

φV sd′′(u|û1) = λS

(
V ′S

(
u+ φ

λS

)
+ 1
)
− λS

(
V sd′(u|û1) + 1

)
,

φV dsd′′(u|û1, û2) = −λD
(
V dsd′(u|û1, û2) + 1

)
.

Then, V sd′(û2|û1) = V dsd′(û2|û1, û2) and V sd′′(û2|û1) < V dsd′′(û2|û1, û2) imply that

(λS − λD)(1 + V sd′(û2|û1)) > λS(V ′S(û2 + φ
λS

) + 1)

⇐⇒ η(1 + V sd′(û2|û1)) > (η + 1)

(
λSΠ− c

φ

)
e−

λS
φ
û2−1. (OA.1.7)

De�ne a function H3 : [û2,∞)→ R as

H3(u) ≡ λS

[
VS(u+ φ

λS
)− V dsd(u|û1, û2)

]
− φV dsd′(u|û1, û2)− c.

With some algebra, we can derive that

H3(u) = (η − 1) c− (λSΠ− c)e−
λS
φ
û2−1 · e

λS
φ

(û2−u) + ηφ
(
V sd′(û2|û1) + 1

)
e
λD
φ

(û2−u).
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Also note that

H3(û2) = λS

[
VS(û2 + φ

λS
)− V sd(û2|û1)

]
− c− φV dsd′(û2|û1, û2)

= φV sd′(û2|û1)− φV dsd′(û2|û1, û2) = 0.

De�ne x ≡ e
λD
φ

(û2−u). Then, H3(u) can be rewritten as follows:

H̃3(x) = (η − 1)c− (λSΠ− c)e−
λS
φ
û2−1xη+1 + ηφ

(
V sd′(û2|û1) + 1

)
x

and H̃3(1) = H3(û2) = 0.

Note that

H̃ ′3(x) = −(η + 1)(λSΠ− c)e−
λS
φ
û2−1xη + ηφ

(
V sd′(û2|û1) + 1

)
.

By (OA.1.7), we can derive that

H̃ ′3(1) = −(η + 1)(λSΠ− c)e−
λS
φ
û2−1 + ηφ

(
V sd′(û2|û1) + 1

)
> 0.

Also note that

H̃ ′′3 (x) = −(η + 1)η(λSΠ− c)e−
λS
φ
û2−1xη−1 < 0.

Therefore, H̃ ′3(x) > 0 for all 0 < x < 1. Since H̃3(1) = 0, H̃3(x) < 0 for all x ∈ (0, 1). Thus,

λS

(
VS(u+ φ

λS
)− V dsd(u|û1, û2)

)
− φV dsd′(u|û1, û2)− c < 0 for all u ≥ û2.

Lastly, I show that the resulting value function is concave, and that LD and LS�the

functions specifying deviations, de�ned in (C.15) and (C.3)�are nonpositive.

Lemma 17. Suppose that Π > c
λD

and η < 1.

(a) V is concave;

(b) for any u ≥ 0, LD(u,R) ≤ 0 for all R ≥ u+ φ
λD

, and LS(u,w) ≤ 0 for all w ≥ u+ φ
λS
.

Proof of Lemma 17. (a) When u < û1, V ′′(u) = V d′′(u) < 0 from Lemma 9 (c).

When û1 < u < û2, the inequality (C.14) is still applicable, and from λS < 2λD, we

have V ′′(u) = V sd′′(u|û1) ≤ 0.

When u > û2, by di�erentiating (OA.1.1) twice, we have

V dsd′′(u|û1, û2) = −
(
λD
φ

)2

·
(

Π− c

λD
− (V sd(û2|û1, û2) + û2)

)
e−

λD
φ

(u−û2).
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Note that V sd(û2|û1, û2) + û2 cannot exceed the �rst-best expected surplus Π − c
λD
,

thus, the above expression is negative.

Since these component functions are smoothly pasted at û1 and û2, the entire value

function is concave.

(b) As in the no e�ciency loss case, V(u) + u is increasing in u, thus, V ′(u) ≥ −1 and it

gives ∂LD

∂R
≤ 0. Thus, it is su�cient to show that LD(u, u + φ

λD
) ≤ 0 for all u ≥ 0.

Observe that from (C.8), (C.9) and (OA.1.2), we have

LD(u, u+ φ
λD

) =

0, if u ≤ û1 or u ≥ û2,

φV dsd′(u|û1, u)− φV sd′(u|û1), if u ∈ (û1, û2).

Since û1 and û2 are chosen to satisfy V dsd′(u|û1, u) < V sd′(u|û1) for all u ∈ (û1, û2),

LD is always nonpositive.

Likewise, from the concavity of V , ∂LS
∂u
≥ 0. Thus, it is su�cient to show that LS(u, u+

φ
λS

) ≤ 0 for all u ≥ 0. Then, we have

LS(u, u+ φ
λS

) =



φV sd′(u|u)− φV d′(u), if u ≤ û1,

0, if u ∈ (û1, û2),

λS(VS(u+ φ
λS

)− V dsd(u|û1, û2))

−c− φV dsd′(u|û1, û2),
if u ≥ û2.

By Lemma 14 and Lemma 16, LS is always nonpositive.

Now I prove Proposition 6.

Proof of Proposition 6. I start by showing that, for each condition in (b) and (c), the switch-

ing points are as stated and the conditions in (a) also hold.

(b-i & c-i) By Lemma 14 (a), V d′(u) > V sd′(u|u) for all u > 0. Note that V d(u) =

V dsd(u|0, 0) and

φV sd′(u|u) = λS(VS(u+ φ
λS

)− V dsd(u|0, 0))− c

by (C.9) and V sd(u|u) = V d(u). Therefore, with û1 = û2 = 0, the conditions (a-i)�(a-iv)

hold trivially, and the condition (a-v) holds as demonstrated above.
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(b-ii & c-ii) By Lemma 14 (b), there exists û1 > 0 such that the conditions (a-i) and (a-ii)

hold. Next, by Lemma 15, there exists û2 > û1 such that the conditions (a-iii) and (a-iv)

hold. By Lemma 16, the condition (a-v) holds.

(c-iii) By Lemma 13, V sd′(0|0) > V d(0). By setting û1 = 0, the conditions (a-i) and (a-ii)

hold trivially. Next, by Lemma 15, there exists û2 > 0 such that the conditions (a-iii) and

(a-iv) hold. By Lemma 16, the condition (a-v) holds.

(d) Following the same steps of the proof of Proposition 3, V solves (HJBV ) subject to

(IC).

OA.2 Proofs of Proposition 4 and Proposition 5

Lemma 18. Suppose that Π > Π̃M(η) and η ≤ c
c+φ

. Then, û2 is less than ū.

Proof of Lemma 18. Since V is strictly concave, û2 < ū is equivalent to 0 < V ′(û2) =

V sd′(û2|û1) = V dsd′(û2|û1, û2). Then, 0 < V dsd′(û2|û1, û2) is equivalent to:

λD(û2 + V ds(û2|û1)) < λDΠ− c− φ. (OA.2.1)

Also note that V dsd′(û2|û1, û2) = V ds′(û2|û1) and V dsd(û2|û1, û2) = V sd(û2|û1) imply that

λD(Π− û2 − V sd(û2|û1)) = λS

(
VS

(
û2 + φ

λS

)
+ û2 + φ

λS

)
− λS

(
V ds(û2|û1) + û2

)
by (C.8) and (C.9). By plugging (C.2) into the above equation, we can derive that

(λS − λD)(V ds(û2|û1) + û2) =λS

(
Π− c

λS

)(
1− e−

λS
φ
û2−1

)
− λDΠ

⇐⇒ ηλD(V ds(û2|û1) + û2) =ηλDΠ− c− (λSΠ− c)e−
λS
φ
û2−1.

Then, by plugging this into (OA.2.1), 0 < V dsd′(û2|û1, û2) is equivalent to

η(c+ φ)− c < (λSΠ− c)e−
λS
φ
û2−1.
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Since Π > c
λD

> c
λS
, the right hand side of the above inequality is always greater than 0.

Since it is assumed that η >
c

c+ φ
, the left hand side of the above inequality is always less

than 0. Therefore, the above inequality always holds, i.e., û2 is less than ū.

Lemma 19. Suppose that η > η = max{ 1
e−1

,
√

c
c+φ
}. There exists Π̃D(η) ∈ (Π̃M(η), Π̃S(η))

such that û1 < u if and only if Π > Π̃D(η).

Proof of Lemma 19. From η > 1
e−1

, Π̃S(η) exists. Suppose that Π ≥ Π̃S(η). By Lemma 13,

û1 = 0. Note that

Π̃S(η) =
e− 1

(e− 1)η − 1
· c
λD
≥ e− 1

e− 2
· c
λD

>
2c

λD
≥ c+ φ

λD
= ΠF .

Then, the project is feasible and ū is greater than 0, i.e., ū > û1.

Now suppose that ΠM(η) < Π < ΠS(η). Since V is strictly concave, û1 < ū is equivalent

to 0 < V ′(û1) = V d′(û1). Note that 0 < V d′(û1) is equivalent to:

φ

λDΠ− c
< e−

λD
φ
û1 = x̂1. (OA.2.2)

Recall that x̂1 is a solution where H̃1(x), as de�ned in (OA.1.4), equals zero. Additionally,

ΠM(η) < Π < ΠS(η) implies that H̃1(1) < 0 < H̃1(x∗) where x∗ is de�ned in (OA.1.5).16

There are two possible cases that satisfy (OA.2.2): (i) x∗ ≥ φ
λDΠ−c ; (ii)

φ
λDΠ−c > x∗ and

H̃1( φ
λDΠ−c) < 0.

The �rst case is equivalent to H̃ ′1( φ
λDΠ−c) < 0. By algebra, we can show that it is

equivalent to
(η + 1)λDΠ− c
(λDΠ− c)η+1

<
ηe

η + 1
φ−η. (OA.2.3)

The second case is equivalent to H̃ ′1( φ
λDΠ−c) ≥ 0 and H̃1( φ

λDΠ−c) < 0. By algebra, we can

show that it is equivalent to

ηe

η + 1
φ−η ≤ (η + 1)λDΠ− c

(λDΠ− c)η+1
< (η(c+ φ)− c) eφ−η−1. (OA.2.4)

Last, by the proof of Lemma 14, we can show that Π > ΠM(η) is equivalent to

(η + 1)λDΠ− c
(λDΠ− c)η+1

<

(
η2

1− η2

)η
ηe

1 + η
c−η. (OA.2.5)

16For simplicity, Π is omitted from the de�nition of H̃1 and x∗.
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Now I compare the above three conditions. Using η >
√
c/(c+ φ), by simple algebra,

we can show that

ηe

η + 1
φ−η < (η(c+ φ)− c)eφ−η−1 <

(
η2

1− η2

)η
ηe

1 + η
c−η.

Therefore, the inequality

(η + 1)λDΠ− c
(λDΠ− c)η+1

< (η(c+ φ)− c) eφ−η−1

imply that (OA.2.3), (OA.2.4) and (OA.2.5). De�ne ΠD(η) be the value of Π that makes

both sides of the above inequality equal. Then, ΠD(η) > ΠM(η) since Π < ΠM(η) implies

Π < ΠD(η). Therefore, there exists ΠD(η) > ΠM(η) such that û1 < ū if and only if

Π > ΠD(η).

Lemma 20. Suppose that η > η =
√

c
c+φ

. Then, û2 ≥ u.

Proof of Lemma 20. By following the proof of Lemma 18, û2 ≥ ū is equivalent to

y ≡ (η − 1)c+ ηφ

(λSΠ− c)e−
λS
φ
û1−1

≥ e
λS
φ

(û1−û2) = ŷ2 (OA.2.6)

By the proof of Lemma 15, ŷ2 is the solution, which is not equal to 1, of H̃2(y) = 0.17.

Since û2 ≥ û1, if y ≥ 1, the above inequality holds, thus, I restrict attention to the case of

y < 1. Observe that the inequality H̃2(y) ≤ 0 implies (OA.2.6) because H̃2 is strictly convex

in y and H̃2(1) ≤ 0.

Using the de�nition of H̃1 in (OA.1.4) and x̂1 ≡ e−
λD
φ
û1 , H̃2(y) can be rewritten as follows:

H̃2(y) =
1− η
1 + η

c− H̃1(x̂1)y +

[
−1− η

1 + η
c+

η

1 + η
(λSΠ− c)e−

λS
φ
û1−1 log y

]
y.

Also note that x̂1 is chosen to satisfy H̃1(x̂1) being greater than equal to zero.

By plugging the de�nition of y into the above equation, we can derive that

H̃2(y) =
1− η
1 + η

c(1− y)− H̃1(x̂1)y +
η

1 + η
((η − 1)c+ ηφ) log y.

17The function H̃2 is de�ned in (OA.1.6)
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Now de�ne a new function G as follows:

G(y) ≡ 1− η
1 + η

c(1− y)− H̃1(x̂1)y +
η

1 + η
((η − 1)c+ ηφ) log y,

and it is enough to show that G(y) ≤ 0 for all y < 1.

Note that

G′′(y) = − η

1 + η

(
(η − 1)c+ ηφ

y2

)
< 0

from η ≥
√

c
c+φ

> c
c+φ

. Also note that

G′(1) = −H̃1(x̂1) +
1

1 + η

(
(η2 − 1)c+ η2φ

)
< 0.

from η ≥
√

c
c+φ

and H̃1(x̂1) ≥ 0. Lastly, note that G(1) = −H̃1(x̂1) ≤ 0. Therefore, for all

y < 1, G(y) ≤ G(1) +G′(1)(1− y) ≤ 0. Therefore, H̃2(y) ≤ 0 and u2 ≥ ū.

Now I prove Proposition 4 and Proposition 5.

Proof of Proposition 4. Note that û2 is always greater than ū by Lemma 20 since η >
√

c
c+φ

.

Additionally, using Lemma 13, Lemma 14 and Lemma 19, we have

V(u) =


V d(u), if ΠF < Π < Π̃D(η),

V sd(u|û1), if Π̃D(η) < Π < Π̃S(η),

V sd(u|0), if Π̃S(η) < Π.

As in Proposition 2, the value functions above can be implemented by direct-only, one-switch

and sequential-only contracts, respectively.

Proof of Proposition 5. By Proposition 6 (b-i), when Π ≤ Π̃M(η), û1 = û2 = 0. By Proposi-

tion 6 (b-ii) and Lemma 18, when Π > Π̃M(η), u > û2 > û2 > 0. Therefore,

V(u) =

V dsd(u|0, 0) = V d(u), if ΠF < Π ≤ Π̃M(η),

V dsd(u|û1, û2), if Π̃M(η).

By Lemma 12, (V dsd(u|û1, û2), u) can be implemented by a two-switch contract. Therefore,

when Π ∈ (ΠF , Π̃M(η)], the direct-only contract is optimal, and when Π > Π̃M(η), there

exists a two-switch contract that is optimal.
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